Skip to main content
Log in

The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Single-phase Ca3Al2O6 was prepared via polymeric precursor method. The influence of the reactants nature in the Ca3Al2O6 synthesis was investigated. For this purpose, citric acid and soluble salts of calcium (nitrate, chloride, carbonate) and aluminium (nitrate, chloride, acetate) were used as starting materials, in the presence and, respectively, in the absence of ethylene glycol. Ca3Al2O6 resulted as single-phase after annealing at 1050 °C for 1 h only starting from calcium nitrate or carbonate and aluminium nitrate or acetate as salts precursor for Ca2+ and Al3+ cations. The formation of Ca3Al2O6 is not conditioned by the ethylene glycol presence in these mixtures. Using calcium and aluminium chlorides, the phases present at 1050 °C are Ca12Al14O33 and unreacted CaO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gao X, Lei L, Lv C, Sun Y, Zheng H, Cui Y. Preparation and photoluminescence property of a loose powder, Ca3Al2O6:Eu3+ by calcination of a layered double hydroxide precursor. J Solid State Chem. 2008;181:1776–81.

    Article  CAS  Google Scholar 

  2. Oh SH, Finones R, Jin S, Choi SY, Kim KN. Influence of tricalcium aluminate phase on in vitro biocompatibility and bioactivity of calcium aluminate bone cement. J Mater Res. 2004;19:1062–7.

    Article  CAS  Google Scholar 

  3. Yang S, Kondo JN, Hayashi K, Hirano M, Domen K, Hosono H. Partial oxidation of methane to syngas over promoted C12A7. Appl Catal A. 2004;277:239–46.

    Article  CAS  Google Scholar 

  4. Ghoroi C, Suresh AK. Solid–Solid reaction kinetics: formation of tricalcium aluminate. AIChE J. 2004;53:2399–410.

    Article  Google Scholar 

  5. Mohamed BM, Sharp JH. Kinetics and mechanism of formation of tricalcium aluminate, Ca3Al2O6. Thermochim Acta. 2002;388:105–14.

    Article  CAS  Google Scholar 

  6. Singh VK, Ali MM, Mandel UK. Formation kinetics of calcium aluminates. J Am Ceram Soc. 1990;73:872–6.

    Article  CAS  Google Scholar 

  7. Stephan D, Wilhelm P. Synthesis of pure cementitious phases by sol–gel process as precursor. Z Anorg Allg Chem. 2004;630:1477–83.

    Article  CAS  Google Scholar 

  8. Douy A, Gervais M. Crystallization of amorphous precursors in the calcia–alumina system: a differential scanning calorimetry study. J Am Ceram Soc. 2000;83:70–6.

    Article  CAS  Google Scholar 

  9. Lazău I, Păcurariu C, Becherescu D, Sim A. The use of some unconventional methods in the calcium aluminates synthesis. Rom J Mater. 2001;3:203–9.

    Google Scholar 

  10. Pati RK, Panda B, Pramanik P. Preparation of nanocrystalline calcium aluminate powders. J Mater Synth Process. 2002;10:157–61.

    Article  CAS  Google Scholar 

  11. Lee SJ, Benson EA, Kriven WM. Preparation of Portland cement components by poly(vinyl alcohol) solution polymerization. J Am Ceram Soc. 1999;82:2049–55.

    Article  CAS  Google Scholar 

  12. Lee SJ, Lee CH, Kriven WM. Synthesis of oxide ceramic powders by polymerized organic inorganic complex route. J Ceram Process Res. 2000;1:92–5.

    Google Scholar 

  13. Gülgün MA, Kriven WM, Nguyen H. Processes for preparing mixed metal oxide powders.US Patent No. 6 482 387 B1, 19 Nov 2002.

  14. Kingsley JJ, Suresh K, Patil KC. Combustion synthesis of fine-particle metal aluminates. J Mater Sci. 1990;25:1305–12.

    CAS  Google Scholar 

  15. Fumo DA, Morelli MR, Segadaes AM. Combustion synthesis of calcium aluminates. Mater Res Bull. 1996;31:1243–55.

    Article  CAS  Google Scholar 

  16. Taş AC. Chemical preparation of the binary compounds in the calcia–alumina system by self-propagating combustion synthesis. J Am Ceram Soc. 1998;81:2853–63.

    Google Scholar 

  17. Ianoş R, Lazău I, Păcurariu C, Barvinschi P. Peculiarities of CaO·6Al2O3 formation by using low-temperature combustion synthesis. Eur J Inorg Chem. 2008;2008(6):925–30.

    Article  Google Scholar 

  18. Ianoş R. An efficient solution for single-step synthesis of 4CaO·Al2O3·Fe2O3 powders. J Mater Res. 2009;24:245–52.

    Article  Google Scholar 

  19. Ianoş R, Lazău I, Păcurariu C, Barvinschi P. Fuel mixture approach for solution combustion synthesis of Ca3Al2O6 powders. Cem Concr Res. 2009;39:566–72.

    Article  Google Scholar 

  20. Taş AC, Majewski PJ, Aldinger F. Chemical preparation of pure strontium-and/or magnesium-doped lanthanum gallate powders. J Am Ceram Soc. 2000;83:2954–60.

    Article  Google Scholar 

  21. Xu Y, Yuan X, Huang G, Long H. Polymeric precursor synthesis of Ba2Ti9O20. Mater Chem Phys. 2005;90:333–8.

    Article  CAS  Google Scholar 

  22. Bernardi MIB, Feitosa CAC, Paskocimas CA, Longo E, Paiva-Santos CO. Development of metal oxide nanoparticles by soft chemical method. Ceram Int. 2009;35:463–6.

    Article  CAS  Google Scholar 

  23. Oliveira HHS, Cebim MA, Da Silva AA, Davolos MR. Structural and optical properties of GdAlO3:RE3+ (RE = Eu or Tb) prepared by the Pechini method for application as X-ray phosphors. J Alloy Compd. 2009;488:619–23.

    Article  CAS  Google Scholar 

  24. Lazarevic ZZ, Vijatovic M, Dohcevic-Mitrovic Z, Romcevic NZ, Romcevic MJ, Paunovic N, Stojanovic BD. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J Eur Ceram Soc. 2010;30:623–8.

    Article  CAS  Google Scholar 

  25. Pechini M. Method for preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent No. 3,330,697, 11 July 1967.

  26. Gaki A, Chrysafi R, Perraki Th, Kakali G. Synthesis of calcium aluminates trough the polymeric precursors route. Chem Ind Chem Eng Q. 2006;12:137–40.

    Article  CAS  Google Scholar 

  27. Gaki A, Chrysafi R, Perraki Th, Kakali G. Chemical synthesis of hydraulic aluminate compounds using the Pechini technique. J Eur Ceram Soc. 2007;27:1781–4.

    Article  CAS  Google Scholar 

  28. Yuan X, Xu Y, He Y. Synthesis of CaAl4O7 via citric acid precursor. J Alloy Compd. 2007;441:251–4.

    Article  CAS  Google Scholar 

  29. Yuan X, Xu Y, He Y. Synthesis of Ca3Al2O6 via citric acid precursor. Mater Sci Eng A. 2007;447:142–5.

    Article  Google Scholar 

  30. Moenke H. Mineralspektren. Berlin: Akademie-Verlag; 1962.

    Google Scholar 

  31. Nakanishi K, Solomon PH. Infrared absorption spectroscopy. San Francisco: Holden-Day, Inc.; 1977.

    Google Scholar 

  32. Ramachandran VS, Beaudoin JJ. Handbook of analytical techniques in concrete science and technology. Principles, techniques and applications. New York: William Andrew Publishing; 2001.

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by the strategic grant POSDRU/88/1.5/S/50783, Project ID50783 (2009), co-financed by the European Social Fund—Investing in People, within the Sector Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Păcurariu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazău, I., Păcurariu, C. & Băbuţă, R. The use of thermal analysis in the study of Ca3Al2O6 formation by the polymeric precursor method. J Therm Anal Calorim 105, 427–434 (2011). https://doi.org/10.1007/s10973-010-1246-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1246-2

Keywords

Navigation