Skip to main content
Log in

Influence of gas media on the thermal decomposition of second valence iron sulphates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

FeSO4·H2O and FeSO4 represent the second valence of iron sulphates. Number of studies has been done to understand formation of intermediate sulphates like FeOHSO4 and Fe2O(SO4)2, representing the oxidation of Fe2+ to Fe3+. At selected temperatures, both the thermo-dynamical equilibrium in the Fe–S–O system and the formation of the crystal structures in the solid phase are controlled by the partial pressure of water vapour and oxygen in the gas phase. The effects of the temperature and the partial pressure of gas components on the solid-phase content are demonstrated by phase diagrams. The study puts the accent on the influence of oxygen content in gas environment on processes of thermal decomposition of FeSO4·H2O and FeSO4. At three quantities of oxygen content—0% (100% Ar), 21% (dry air) and 100% (pure O2) the processes of oxidation and formatting metastable iron sulphates were examined by several experimental techniques. The thermal decomposition of samples was investigated by TG–DTG–DTA method in the temperature range 293–1400 K. Partial pressure of water vapour was determined by the quantity of water released from dehydration process of FeSO4·H2O. Infrared spectroscopy, Mössbauer spectroscopy and X-Ray powder diffraction method were used for identification of the new formed solid structures and for characterization of the content of the iron sulphates with different valencies of iron. The experimental data and their analyses give the possibility to determine the different stages of decomposition, related to the formation of intermediates. Depending on gas environment, the basic relationships for reaction kinetics is drawn. It is demonstrated on that correlation exists between the kinetic’s parameters and the content of oxygen in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zboril R, Mashlan M, Papaefthymiou V, Hadjipanayis G. Thermal decomposition of Fe2(SO4)3: demonstration of Fe2O3 polymorphism. J Radioanal Nucl Chem. 2003;255(3):413–7.

    Article  CAS  Google Scholar 

  2. Zboril R, Mashlan M, Petridis D. Polymorphous exhibitions of iron (III) oxide during isothermal oxidative decompositions of iron salts: a key role of the powder layer thickness. Chem Mater. 2002;14(3):969–82.

    Article  CAS  Google Scholar 

  3. Solc Z, Trojan M, Brandova D, Kuchler M. A study of thermal preparation of iron (III) pigments by means of thermal analysis methods. J Therm Anal. 1988;3(2):463–9.

    Google Scholar 

  4. Šulcová P, Trojan M. Thermal synthesis and properties of the (Bi2O3)1–x (Ho2O3) x pigments. J Therm Anal Calorim. 2006;83(3):557–9.

    Article  Google Scholar 

  5. Šulcová P, Trojan M. Thermal analysis of pigments based on Bi2O3. J Therm Anal Calorim. 2006;84(3):737–40.

    Article  Google Scholar 

  6. Luxová J, Trojan M, Šulcová P. Application of mechanical activation for the synthesis of the pigment ZnFe2O4 with the spinel structure. Acta Metall Slovaca. 2005;11:437–49.

    Google Scholar 

  7. Mesíková Ž, Šulcová P, Trojan M. Yellow pigments based on Fe2TiO5 and TiO2. J Therm Anal Calorim. 2006;83(3):561–3.

    Article  Google Scholar 

  8. Mesíková Ž, Šulcová P, Trojan M. Preparation and practical application of spinel pigment Co0.46Zn0.55(Ti0.064Cr0.91)2O4. J Therm Anal Calorim. 2006;84(3):733–6.

    Article  Google Scholar 

  9. Zboril R, Mashlan M, Petridis D, Krausova D, Pikal P. The role of intermediates in the process of red ferric pigment manufacture from FeSO4.7H2O. Hyperfine Interact. 2002;139(1-4):437–45.

    Article  Google Scholar 

  10. Kennedy T, Sturman BT. The oxidation of iron (II) sulphide. J Therm Anal. 1975;8:329–37.

    Article  CAS  Google Scholar 

  11. Almeida C, Giannetti B. Comparative study of electrochemical and thermal oxidation of pyrite. J Solid State Electrochem. 2002;6:111–8.

    Article  CAS  Google Scholar 

  12. Ferrow EA, Mannerstrand M, Berg B. Reaction kinetics and oxidation mechanisms of the conversion of pyrite to ferrous sulphate: a Mössbauer spectroscopy study. Hyperfine Interact. 2005;163:109–19.

    Article  CAS  Google Scholar 

  13. Guilin Hu, Dam-Johansen Kim, Wede Stig, Peter Hansen Jens. Decomposition and oxidation of pyrite. Prog Energy Combust Sci. 2006;2:295–314.

    Google Scholar 

  14. Huiping Hu, Chen Qiyuan, Yin Zhoulan, Zhang Pingmin. Thermal behaviors of mechanically activated pyrites by thermogravimetry. Thermochim Acta. 2003;398:233–40.

    Article  Google Scholar 

  15. Usher CR, JrCA Cleveland, Strongin DR, Schoonen MA. Origin of oxygen in sulphate during pyrite oxidation with water and dissolved oxygen: an in situ horizontal attenuated total reflectance infrared spectroscopy isotope study. Environ Sci Technol. 2004;38(21):5604–6.

    Article  CAS  Google Scholar 

  16. Frost Ray L, Palmer Sara J, Kristóf J, Horváth E. Dynamic and controlled rate thermal analysis of halotrichite. J Therm Anal Calorim. 2010;99:501–7.

    Article  Google Scholar 

  17. Navrotsky Al, Lázár Forray F, Drouet Ch. Jarosite stability on Mars. Icarus. 2005;176:250–3.

    Article  CAS  Google Scholar 

  18. Pelovski Y, Petkova V, Nikolov S. Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate. Thermochim Acta. 1996;274:273–80.

    Article  CAS  Google Scholar 

  19. Pelovski Y, Petkova V. Mechanism and kinetics of inorganic sulphates decomposition. J Therm Anal. 1997;49:1227–41.

    Article  CAS  Google Scholar 

  20. Petkova V, Pelovski Y. Investigation on the thermal properties of Fe2O(SO4)2: part I. J Therm Anal Calorim. 2001;64:1025–35.

    Article  CAS  Google Scholar 

  21. Petkova V, Pelovski Y. Investigation on the Thermal Properties of Fe2O(SO4)2: part II. J Therm Anal Calorim. 2001;64:1037–44.

    Article  CAS  Google Scholar 

  22. Petkova V, Pelovski Y. Comparative DSC study on thermal decomposition of iron sulphates. J Therm Anal Calorim. 2008;93(3):847–52.

    Article  CAS  Google Scholar 

  23. Krumm S. WINFIT 1.0.A computer program for X-ray diffraction line profile analysis. XIII Conference on Clay Mineralogy and Petrology. Acta Univ Carol Geol. 1994;38:253–61.

    CAS  Google Scholar 

  24. Kraus W, Nolze G. PowderCell—a program to visualize crystal structures, calculate the corresponding powder patterns and refine experimental curves. J Appl Cryst. 1996;29:301–3.

    Article  CAS  Google Scholar 

  25. Powder Diffraction File Alphabetical Index, JCPDS, International Centre for Diffraction Data, Pennsylvania 19073–3273, sets 1–51:2001.

  26. Nakamoto K. Infrared spectra of the inorganic and coordination compounds. 3rd ed. New York: Wiley; 1977. p. 153–4.

    Google Scholar 

  27. Masset P, Poinso JY, Poignet JC. TG/DTA/MS study of the thermal decomposition of FeSO4·6H2O. J Therm Anal Calorim. 2006;83(2):457–62.

    Article  CAS  Google Scholar 

  28. Broun ME, Dollimor D, Galwey AK. Reaction in the solid state. Amsterdam, Oxford, New York: Elsevier; 1980.

    Google Scholar 

  29. Scordari F. Crystal chemical implications on some alkali hydrated sulphates. Tsch Mineral Petrogr Mitt. 1981;28(3):207–22.

    Article  CAS  Google Scholar 

  30. Scordari F, Ventruti G, Gualtieri Alessandro F. The structure of metahohmannite, Fe2 3+[O(SO4)2].4H2O, by in situ synchrotron. Am Mineral. 2004;89:365–70.

    CAS  Google Scholar 

  31. Ventruti G, Scordari F, Schingaro E, Gualtieri AF, Meneghini C. The order-disorder character of FeOHSO4 obtained from the thermal decomposition of metahohmannite, Fe2 3+(H2O)4[O(SO4)2]. Am Mineral. 2005;90(4):679–86.

    Article  CAS  Google Scholar 

  32. Majzlan J, Navrotsky Al, Blainemccleskey R, ChN Alpers. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur J Mineral. 2006;18:175–86.

    Article  CAS  Google Scholar 

  33. Majzlan J, Navrotsky Al, Schwertmann U. Thermodynamics of iron oxides: part III. Enthalpies of formation and stability of ferrihydrite (~Fe(OH)3), schwertmannite (~FeO(OH)3/4(SO4)1/8), and ε-Fe2O3. Geochim Cosmochim Acta. 2004;68(5):1049–59.

    Article  CAS  Google Scholar 

  34. Tõnsuaadu K, Gruselle M, Villain F, Thouvenot R, Peld M, Mikli V, Traksmaa R, Gredin P, Carrier X, Salles L. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: analytical and structural studies. J Colloid Interface Sci. 2006;304(2):283–91.

    Article  Google Scholar 

  35. Sherina Peroos, Zhimei Du, de Leeuw NH. A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials. 2006;27(9):2150–61.

    Article  Google Scholar 

  36. Tônsuaadu K, Peld M, Leskelä T, Mannonen R, Niinistö L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256(1):55–65.

    Article  Google Scholar 

  37. Wiria FE, Leong KF, Chua CK, Liu Y. Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater. 2007;3(1):1–12.

    Article  CAS  Google Scholar 

  38. Jokanović V, Jokanović B, Marković D, Živojinović V, Pašalić S, Izvonar D, Plavšić M. Kinetics and sintering mechanisms of hydro-thermally obtained hydroxyapatite. Mater Chem Phys. 2008;111(1):180–5.

    Article  Google Scholar 

  39. Bianco A, Cacciotti I, Lombardi M, Montanaro L. Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability. Mater Res Bull. 2009;44(2):345–54.

    Article  CAS  Google Scholar 

  40. He QJ, Huang ZL, Cheng XK, Yu J. Thermal stability of porous A-type carbonated hydroxyapatite spheres. Mater Lett. 2008;62(3):539–42.

    Article  CAS  Google Scholar 

  41. Lafon JP, Champion E, Bernache-Assollant D, Gibert R, Danna AM. Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72:1127–34.

    Article  CAS  Google Scholar 

  42. Kannan S, Ventura JMG, Ferreira JMF. Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures. Ceram Int. 2007;33(8):1489–94.

    Article  CAS  Google Scholar 

  43. Stoyanov V. Rheological characteristics of cement pastes, determined by rotational viscometers. In: Proceedings of the X-th international conference on mechanics and technology of composite materials, vol 15–17, Sofia, Bulgaria, September; 2003. pp. 213–8.

  44. Ivanov Ya., Stoyanov V, Kotsilkova R. Rheological estimation of methods for concrete design. In: Proceedings of the XIII-th international congress on rheology, vol 20–25, Cambridge, UK, August; 2000. pp. 205–7.

  45. Ivanov Ya, Yanovsky Yu, Stoyanov V, Karnet Yu, On the influence of interface layers on the properties of polymer nanocomposites, In: Proceedings of the III-rd National Seminar on Nanotechnology, Sofia, Bulgaria, November 30—December 1, 2001, Nanoscience & Nanotechnology ‘02, Balabanova E and Dragieva I editors, Sofia: Heron Press; 2002. pp. 107–9.

  46. Lajmi B, Hidouri M, Wattiaux A, Fournés L, Darriet J, Ben Amara M. Crystal structure, Mössbauer spectroscopy, and magnetic properties of a new potassium iron oxyphosphate K11Fe15(PO4)18O related to the Langbeinite-like compounds. J Alloys Compd. 2003;361(1–2):77–83.

    Article  CAS  Google Scholar 

  47. Hibino T, Yasumasa Y, Katsunori K, Atsumu T. Decarbonation behavior of Mg–Al–CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 1995;43(4):427–32.

    Article  CAS  Google Scholar 

  48. Petrova N, Mizota T, Fujiwara K. Hydration heats of zeolites for evaluation as heat exchangers. J Therm Anal Calorim. 2001;64:157.

    Article  CAS  Google Scholar 

  49. Mizota T, Petrova N, Nakayama N. Entropy of zeolitic water. J Therm Anal Calorim. 2001;64:211–7.

    Article  CAS  Google Scholar 

  50. Stanimirova Ts, Petrova N. DTA and TG study of minerals from the hydrotalcite–takovite isomorphic series: II. Influence of M2+/M3+ cation ratio. Compt Rend Acad Bulg Sci. 1999;52(11-12):59–62.

    CAS  Google Scholar 

  51. Stanimirova Ts, Piperov N, Petrova N, Kirov G. Thermal evolution of Mg–Al–CO3 hydrotalcites. Clay Miner. 2004;39(2):177–91.

    Article  CAS  Google Scholar 

  52. Petrova N, Mizota T, Stanimirova Ts, Kirov G. Sorption of water vapor on a low-temperature hydrotalcite metaphase: calorimetric study. Microporous Mesoporous Mater. 2003;63(1-3):139–45.

    Article  CAS  Google Scholar 

  53. Stanimirova Ts, Vergilov I, Kirov G, Petrova N. Thermal decomposition products of hydrotalcite-like compounds: low-temperature metaphases. J Mater Sci. 1999;34(17):4153–61.

    Article  CAS  Google Scholar 

  54. Holgado MJ, Labajos FM, Montero MJS, Rives V. Thermal decomposition of Mg/V hydrotalcites and catalytic performance of the products in oxidative dehydrogenation reactions. Mater Res Bull. 2003;38:1879–91.

    Article  CAS  Google Scholar 

  55. Stoyanov V. A concept of the rheological behaviour of suspensions, In: Progress and trends in rheology, Emri I editor, In: Proceedings of the V-th European Rheology Conference, Slovenia, Portoroz; 1998. pp. 597–598.

  56. Yörükoğulları E, Yilmaz G, Dikmen S. Thermal treatment of zeolitic tuff. J Therm Anal Calorim. 2010;100(3):925–8.

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support of this study by the Bulgarian National Scientific Research Fund by contract DRNF02/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Petkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkova, V., Pelovski, Y., Paneva, D. et al. Influence of gas media on the thermal decomposition of second valence iron sulphates. J Therm Anal Calorim 105, 793–803 (2011). https://doi.org/10.1007/s10973-010-1242-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1242-6

Keywords

Navigation