Skip to main content

1 + 1 = 3: Coupling μ-XRD2 and DTA New insights in temperature-dependent phase transitions

The gypsum–bassanite–anhydrite system as an example

Abstract

The article shows how additional information can be obtained from coupling a self constructed DTA-system with a commercially available BRUKER D8 DISCOVER GADDS XRD2-microdiffractometer. The dehydration process of gypsum to anhydrite in the temperature range from room temperature up to 723 K is used as an example. Due to the short measurement times of 10 s for each diffraction pattern the three phase transformations from gypsum to anhydrite (anhydrite II) via the hemihydrate bassanite, a water-free bassanite structure (γ-anhydrite, anhydrite III) were resolved in detail by recording the thermal signal and the diffraction pattern simultaneously. To the best of our knowledge, this is the first observation of a completely reversible dehydration/rehydration process of the bassanite/γ-anhydrite-structure around 373 K which is studied by coupled XRD and differential thermal analysis (DTA) measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Wefers K. Gleichzeitige Röntgen- und DTA-Untersuchungen fester Stoffe. Berichte der Deutschen Keramischen Gesellschaft. 1965;42(2):35–60.

    CAS  Google Scholar 

  2. 2.

    Fawcett TG, et al. The rapid simulaneous measurement of thermal and structural data by a novel DSC/XRD instrument. Adv X-Ray Anal. 1985;28:227–32.

    CAS  Google Scholar 

  3. 3.

    Fawcett TG, et al. Combined thermal analyzer and X-ray diffractometer. Midland: The Dow Chemical Company; 1989. p. 26.

    Google Scholar 

  4. 4.

    Kishi A, Toraya H. Simultaneous measurements of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) data under controlled humidity condition: instrumentation and application to studies on hydration, dehydration, and rehydration processes of pharmaceutical compounds. Powder Diffr. 2004;19(1):31–5.

    Article  CAS  Google Scholar 

  5. 5.

    Russell TP, Koberstein JT. Simultaneous differential scanning calorimetry and small-angle X-ray-scattering. J Polym Sci B. 1985;23(6):1109–15.

    CAS  Google Scholar 

  6. 6.

    Bras W, et al. The combination of thermal-analysis and time-resolved X-ray techniques—a powerful method for materials characterization. J Appl Crystallogr. 1995;28:26–32.

    Article  CAS  Google Scholar 

  7. 7.

    Kalnin D, et al. Monitoring fat crystallization in aerated food emulsions by combined DSC and time-resolved synchrotron X-ray diffraction. Food Res Int. 2002;35:927–34.

    Article  CAS  Google Scholar 

  8. 8.

    Arkadiev VA, et al. Wide-band X-ray optics with a large aperture. Sov Phys Usp. 1989;32:271–6.

    Article  Google Scholar 

  9. 9.

    Kumakhov MA, Komarov FF. Multiple reflection from surface X-ray optics. Phys Rep. 1990;191(5):289–350.

    Article  CAS  Google Scholar 

  10. 10.

    Bjeoumikhov A, Bjeoumikhova S, Wedell R. Capillary optics in X-ray analysis. Part Part Syst Charact. 2005;22:384–90.

    Article  Google Scholar 

  11. 11.

    Bjeoumikhov A, Bjeoumikhova S, Wedell R. New developments and applications of X-ray capillary optics. Part Part Syst Charact. 2009;26(3):9.

    Article  Google Scholar 

  12. 12.

    Berthold C, Bjeoumikhov A, Brügemann L. Fast XRD2 microdiffraction with focusing X-ray microlenses. Part Part Syst Charact. 2009;26(3):107–11.

    Article  CAS  Google Scholar 

  13. 13.

    Chang LLY, Howie RA, Zussman J. Non-silicates: sulphates, carbonates, phosphates, halides. rock forming minerals, vol 5B. Bath: Geological Society Publishing House; 1997. p. 392.

    Google Scholar 

  14. 14.

    Bezou C, Mutin JC, Nonat A. Crystal-chemistry of plaster constituent phases. Ann Chim Sci Mater. 1990;15(6):307–14.

    CAS  Google Scholar 

  15. 15.

    Morris RJ. X-ray diffraction identification of the alpha- and beta-forms of calcium sulphate hemihydrate. Nature. 1963;198:1299.

    Article  Google Scholar 

  16. 16.

    Abriel W, Reisdorf K. Dehydration reactions of gypsum: a neutron and X-ray diffraction study. J Solid State Chem. 1990;85:23–30.

    Article  CAS  Google Scholar 

  17. 17.

    Deutsch Y, Nathan Y, Sarig S. Thermogravimetric evaluation of the kinetics of the gypsum hemihydrate soluble anhydrite transitions. J Therm Analy. 1994;42(1):159–74.

    Article  CAS  Google Scholar 

  18. 18.

    Hudson-Lamb DL, Strydon CA, Potgieter JH. The thermal dehydration of natural gypsum and pure calcium sulphate dihydrate (gypsum). Thermochim Acta. 1996;282/283:483–92.

    Article  CAS  Google Scholar 

  19. 19.

    Badens E, Veesler S, Boistelle R. Crystallization of gypsum from hemihydrate in presence of additives. J Cryst Growth. 1999;199:704–9.

    Article  Google Scholar 

  20. 20.

    Ballirano P, et al. The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (CaSO4 x 0.5H2O). Eur J Mineral. 2001;13(5):985–93.

    Article  CAS  Google Scholar 

  21. 21.

    Follner S, et al. The setting behaviour of alpha- and beta-CaSO4 x 0.5H2O as a function of crystal structure and morphology. Cryst Res Technol. 2003;37(10):1075–87.

    Article  Google Scholar 

  22. 22.

    Prasad PSR, et al. Direct formation of the gamma-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. Am Min. 2005;90(4):672–8.

    Article  CAS  Google Scholar 

  23. 23.

    Carbone M, Ballirano P, Caminiti R. Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur J Min. 2008;20:621–7.

    Article  CAS  Google Scholar 

  24. 24.

    Christensen AN, et al. Formation and transformation of five different phases in the CaSO4–H2O system: crystal structure of the subhydrate beta-CaSO4 x 0.5H2O and soluble anhydrite CaSO4. Chem Mater. 2008;20(6):2124–32.

    Article  CAS  Google Scholar 

  25. 25.

    Ballirano P, Melis E. Thermal behaviour and kinetics of dehydration in air of bassanite, calcium sulphate hemihydrate (CaSO4 x 0.5H2O) from X-ray powder diffraction. Eur J Mineral. 2009;21(5):985–93.

    Article  CAS  Google Scholar 

  26. 26.

    Ballirano P, Melis E. Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Phys Chem Min. 2009;36(7):391–402.

    Article  CAS  Google Scholar 

  27. 27.

    Seufert S, et al. Discrimination of bassanite and anhydrite III dehydrated from gypsum at different temperatures. Zeitschrift Fur Kristallographie. 2009;3030:447–52.

    Google Scholar 

  28. 28.

    Lippmann F. Mineralogische Untersuchungen an einigen niederhessischen Tertiärtonen (Unter besonderer Berücksichtigung der Differntialthermoanalyse). Heidelberger Beiträge zur Mineralogie und Petrographie. 1952;3:219–52.

    Article  CAS  Google Scholar 

  29. 29.

    Lippmann F. Über eine Apparatur zur Differentialthermoanalyse (DTA). Keramische Zeitschrift. 1959; Nr. 9, 10, 11, p. 475, 524, 570.

Download references

Acknowledgements

We thank the workshop team of the Institute for Geoscience Tübingen (IFG) for manufacturing the DTA block and modification of the furnace. Dr. A. Bjeoumikhov from the IFG-Adlershof is kindly acknowledged for providing the X-ray optics and valuable discussions. V. Presser gratefully acknowledges financial support from the Alexander-von-Humboldt foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Berthold.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berthold, C., Presser, V., Huber, N. et al. 1 + 1 = 3: Coupling μ-XRD2 and DTA New insights in temperature-dependent phase transitions. J Therm Anal Calorim 103, 917–923 (2011). https://doi.org/10.1007/s10973-010-1220-z

Download citation

Keywords

  • DTA
  • Thermal analysis
  • Capillary optics
  • Microdiffraction
  • Gypsum
  • Anhydrite
  • Bassanite