Journal of Thermal Analysis and Calorimetry

, Volume 104, Issue 1, pp 131–139 | Cite as

Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence

  • Andrzej SkoczowskiEmail author
  • Anna Janeczko
  • Gábor Gullner
  • István Tóbias
  • Andrzej Kornas
  • Balázs Barna


The aim of the study has been to determine the protection effect of brassinosteroid (BR27) in oilseed rape cotyledons against infection by an incompatible wild type of, a hypersensitive response mutant of and saprophytic Pseudomonas bacteria. In this paper, membrane permeability, PSII efficiency and metabolic activity were analysed. The following strains of Pseudomonans were used: P. syringae pv. syringae (Ps), P. syringae pv. syringae hrcC mutant (Pm) and P. fluorescence (Pf). The study was carried out using two cultivars of spring oilseed rape (Brassica napus L.): ‘Licosmos’ and ‘Huzar’. Pre-treatment of cotyledons with BR27 caused about 50–70% increase in ion leakage for both cultivars. However, BR27 significantly decreased ion leakage from cotyledons inoculated with Ps in both cultivars. Infection with Ps and Pf caused disturbances of energy flow in PSII by lowering its efficiency in rape cotyledons. We noted insignificant impact of 24-epibrassinolide on PSII efficiency if compared to absolute control, but generally it had a positive effect in plants infected with bacteria. The values of heat flow in all treatments, except for cotyledons infected with Ps, decreased during 20 h after inoculation. However, the curves of heat flow for Ps-infected cotyledons showed a completely different pattern with at least two peaks. BR27 pre-treated cotyledons infected with Ps had higher heat flow in comparison to Ps infected ones. BR27 treatment did not change specific enthalpy of cotyledon growth (Δgh) for both cultivars if compared with absolute control. However, infection with Ps markedly increased Δgh values by about 200% for both cultivars. We suggested protective action of BR27 in oilseed rape cotyledons after bacterial infection with Pseudomonas.


Brassica napus 24-Epibrassinolide Isothermal calorimetry Membrane permeability Pathogenesis PSII efficiency 



Absolute control


Energy absorption






Colony forming unit


Energy dissipation


Energy flux for electron transport


Maximum quantum yield of PSII


Hypersensitive response


Pseudomonas syringae pv. syringae


Pseudomonas syringae pv. syringae hrcC mutant


Pseudomonas fluorescence


PSII reaction centres


Energy flux for trapping


Specific enthalpy of growth


  1. 1.
    Grove MD, Spencer GF, Rohwedder WK, Mandawa N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature. 1979;281:216–7.CrossRefGoogle Scholar
  2. 2.
    Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–46.CrossRefGoogle Scholar
  3. 3.
    Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature. 2001;410:380–3.CrossRefGoogle Scholar
  4. 4.
    Symons GM, Ross JJ, Jager CE, Reid JB. Brassinosteroid transport. J Exp Bot. 2008;59:17–24.CrossRefGoogle Scholar
  5. 5.
    Janeczko A, Biesaga-Kościelniak J, Oklešt’ková J, Filek M, Dziurka M, Szarek-Łukaszewska G, Kościelniak J. Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci. 2010;196:311–21.Google Scholar
  6. 6.
    Janeczko A, Swaczynová J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant. 2010;54:477–82.CrossRefGoogle Scholar
  7. 7.
    Zullo MAT, Kohout L. Semisystematic nomenclature of brassinosteroids. Plant Growth Regul. 2004;42:15–28.CrossRefGoogle Scholar
  8. 8.
    Iwasaki T, Shibaoka H. Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol. 1991;32:1007–14.Google Scholar
  9. 9.
    Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci. 1997;128:405–13.CrossRefGoogle Scholar
  10. 10.
    Hu Y, Bao F, Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction. Plant J. 2000;24:693–701.CrossRefGoogle Scholar
  11. 11.
    Zullo MAT, Adam G. Brassinosteroid phytohormones—structure, bioactivity and applications. Braz J Plant Physiol. 2002;14:83–121.CrossRefGoogle Scholar
  12. 12.
    Fariduddin Q, Hasan SA, Ali B, Hayat S, Ahmad A. Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol. 2008;32:17–21.Google Scholar
  13. 13.
    Bajguz A, Hayat S. Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem. 2009;47:1–8.CrossRefGoogle Scholar
  14. 14.
    Volynets AP, Pschenichnaya LA, Manzhelesova NE, Morozik GV, Khripach VA. The nature of protective action of 24-epibrassinolide on barley plants. Proc Plant Growth Regul Am Soc. 1997;24:133–7.Google Scholar
  15. 15.
    Khripach VA, Zhabinskii VN, de Groot AE. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot. 2000;86:441–7.CrossRefGoogle Scholar
  16. 16.
    Krishna P. Brassinosteroid-mediated stress responses. J Plant Growth Regul. 2003;22:289–97.CrossRefGoogle Scholar
  17. 17.
    Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takasuto S, Yamaguchi I, Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–98.CrossRefGoogle Scholar
  18. 18.
    Heath MC. Hypersensitive response-related death. Plant Mol Biol. 2000;44:321–34.CrossRefGoogle Scholar
  19. 19.
    Chou H-M, Bundock N, Rolfe SA, Scholes JD. Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol. 2000;1:99–113.CrossRefGoogle Scholar
  20. 20.
    Berger S, Papadopoulos M, Schreiber U, Kaiser W, Roitsch T. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiol Plant. 2004;122:419–28.CrossRefGoogle Scholar
  21. 21.
    Bonfig KB, Schreiber U, Gabler A, Roitsch T, Berger S. Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta. 2006;225:1–12.CrossRefGoogle Scholar
  22. 22.
    Janeczko A, Tóbias I, Skoczowski A, Dubert F, Gullner G, Barna B. Bacterial infection and pretreatment with 24-epibrassinolide markedly affect the heat emission and membrane permeability of rape cotyledons. Thermochim Acta. 2007;458:88–91.CrossRefGoogle Scholar
  23. 23.
    Deng W-L, Preston G, Collmer A, Chang Ch-J, Huang H-Ch. Characterization of the hrpC and hrpRS operons of Pseudomonas syringae pathovars syringae, tomato, and glycinea and analysis of the ability of hrpF, hrpG, hrcC, hrpT, and hrpV mutants to elicit the hypersensitive response and disease in plants. J Bacteriol. 1998;180:4523–31.Google Scholar
  24. 24.
    Szatmári Á, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozsó Z. Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. Plant Cell Rep. 2006;25:728–40.CrossRefGoogle Scholar
  25. 25.
    Barna B, Adám A, Király Z. Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissenschaften. 1993;80:420–2.CrossRefGoogle Scholar
  26. 26.
    Strasser RJ, Srivatava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetics samples. In: Yunus M, Pathre U, Mohaty P, editors. Probing photosynthesis: mechanism, regulation and adaptation. London: Taylor and Francis; 2000. p. 445–83.Google Scholar
  27. 27.
    Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant. 2007;51:355–8.CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Ramirez J, Reboutier D, Brault M, Trouverie J, Pennarun AM, Amiar Z, Biligui B, Galagovsky L, Rona JP. Brassinosteriods regulate plasma membrane anion channels in addition to proton pumps during expansion of Arabidopsis thaliana cells. Plant Cell Physiol. 2005;46:1494–504.CrossRefGoogle Scholar
  29. 29.
    Dhaubhadel S, Browning KS, Gallie DR, Krishna P. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 2002;29:681–91.CrossRefGoogle Scholar
  30. 30.
    Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 2009;150:801–14.CrossRefGoogle Scholar
  31. 31.
    Ali B, Hasana SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean. Environ Exp Bot. 2008;62:153–9.CrossRefGoogle Scholar
  32. 32.
    Vlašánková E, Kohut L, Klemš M, Eder J, Reinöhl V, Hradilik J. Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol Plant. 2009;31:987–93.CrossRefGoogle Scholar
  33. 33.
    Pogány M, Koehl J, Heiser I, Elstner EF, Barna B. Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to Tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol. 2004;65:39–47.CrossRefGoogle Scholar
  34. 34.
    Barna B, Smigocki AC, Baker JC. Transgenic production of cytokinin suppresses bacterially induced hypersensitive response symptoms and increases antioxidative enzyme levels in Nicotiana spp. Phytopathology. 2008;98:1242–7.CrossRefGoogle Scholar
  35. 35.
    Shan L, He P, Li J, Heese A, Peck SC, Nürnberger T, Martin GB, Sheen J. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe. 2008;4:17–27.CrossRefGoogle Scholar
  36. 36.
    Sasse JM. Physiological actions of brassinosteroids: an update. J Plant Growth Regul. 2003;22:276–88.CrossRefGoogle Scholar
  37. 37.
    Janeczko A, Filek W, Biesaga-Kościelniak J, Marcińska L, Janeczko Z. The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tissue Organ Cult. 2003;72:147–51.CrossRefGoogle Scholar
  38. 38.
    Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S. A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot. 2004;55:1135–43.CrossRefGoogle Scholar
  39. 39.
    Janeczko A, Kościelniak J, Pilipowicz M, Szarek-Łukaszewska G, Skoczowski A. Protection of winter rape photosystem II by 24-epibrassinolide under cadmium stress. Photosynthetica. 2005;43:293–8.CrossRefGoogle Scholar
  40. 40.
    Wilen RW, Sacco M, Gusta LV, Krishna P. Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol Plant. 1995;95:195–202.CrossRefGoogle Scholar
  41. 41.
    Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol. 1999;40:333–42.CrossRefGoogle Scholar
  42. 42.
    Mazorra LM, Núñez M. Brassinosteroid analogues differentially modify peroxidase activity, superoxide dismutase activity and protein content in tomato seedlings. Cult Tropic. 2000;21:29–33.Google Scholar
  43. 43.
    Mazorra LM, Núñez M, Hechavarria M, Coll F, Sanchez-Blanco MJ. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant. 2002;45:593–6.CrossRefGoogle Scholar
  44. 44.
    Singh I, Shono M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 2005;47:111–9.CrossRefGoogle Scholar
  45. 45.
    Pociecha E, Janeczko A. Oddziaływanie 24-epibrasinolidu i stresu wysokiej temperatury na aktywność enzymów antyoksydacyjnych i rozwój roślin jęczmienia jarego. Zesz Probl Post Nauk Rol. 2008;524:83–93. (in Polish with English abstract).Google Scholar
  46. 46.
    Criddle RS, Fontana AJ, Rank DR, Paige L, Hansen D, Breidenbach RW. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal Biochem. 1991;194:413–7.CrossRefGoogle Scholar
  47. 47.
    Feng W, Ning L, Daley LS, Moreno Y, Azarenko A, Criddle S. Theoretical fitting of energetics of CAM path to calorimetric data. Plant Physiol Biochem. 1994;32:591–8.Google Scholar
  48. 48.
    Płażek A, Rapacz M. The intensity of respiration and heat emission from seedlings of Festuca pratensis (Hud.) and Hordeum vulgare L. during pathogenesis caused by Bipolaris sorokiniana (Sacc.) Shoem. Acta Physiol Plant. 2000;22:25–30.CrossRefGoogle Scholar
  49. 49.
    Sigstad EE, Prado FE. A microcalorimetric study of Chenopodium quinoa Willd seed germination. Thermochim Acta. 1999;326:159–64.CrossRefGoogle Scholar
  50. 50.
    Stokłosa A, Janeczko A, Skoczowski A, Kieć J. Isothermal calorimetry as a tool for estimating resistance of wild oat (Avena fatua L.) to aryloxyphenoxypropionate herbicides. Thermochim Acta. 2006;441:203–6.CrossRefGoogle Scholar
  51. 51.
    Schabes FI, Sigstad EE. A calorimetric study of the allelopathic effect of cnicin isolated from Centaurea diffusa Lam. on the germination of soybean (Glicine max) and radish (Raphanus sativus). Thermochim Acta. 2007;458:84–7.CrossRefGoogle Scholar
  52. 52.
    Troć M, Skoczowski A, Barańska M. The influence of sunflower and mustard leaf extracts on the germination of mustard seeds. J Therm Anal Calorim. 2009;95:727–30.CrossRefGoogle Scholar
  53. 53.
    Wadsö I. Trends in isothermal microcalorimetry. Chem Soc Rev. 1997;26:79–86.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Andrzej Skoczowski
    • 1
    • 3
    Email author
  • Anna Janeczko
    • 1
  • Gábor Gullner
    • 2
  • István Tóbias
    • 2
  • Andrzej Kornas
    • 3
  • Balázs Barna
    • 2
  1. 1.Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakowPoland
  2. 2.Plant Protection InstituteHungarian Academy of SciencesBudapestHungary
  3. 3.Institute of BiologyPedagogical UniversityKrakowPoland

Personalised recommendations