Skip to main content
Log in

Thermodynamics of the bis-(η6-m-xylene)molybdenum fulleride [(η6-(m-xylene))2Mo]•+[C60]•−

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the temperature dependence of heat capacity C p° = f(T) of crystalline bis-(η6-m-xylene)molybdenum fulleride between T = (8 and 320) K was measured by precision adiabatic vacuum calorimetry. Also the temperature dependence of EPR signal parameters of bis-(η6-m-xylene)molybdenum fulleride in the range from 120 to 300 K was investigated by electron paramagnetic resonance. In the interval 175–220 K the reversible endothermic transformation was detected and its thermodynamic characteristics were estimated. This transformation was caused by the dissociation of the (C60 )2 dimer in the [(η6-(m-xylene))2Mo]•+[C60]•− fulleride during heating. Based on the experimental data, the standard (p° = 0.1 MPa) thermodynamic functions, namely, the heat capacity, enthalpy, entropy, and Gibbs function were calculated for dimeric fulleride in the interval from T → 0 to 175 K as well as for monomeric [(η6-(m-xylene))2Mo]•+[C60]•− complex between 220 and 320 K. The standard thermodynamic properties of tested fulleride and previously studied C60 fullerite and neutral dimer (C60)2 were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid C60: a new form of carbon. Nature. 1990;347:354–8.

    Article  Google Scholar 

  2. Konarev DN, Lyubovskaya RN. Donor–acceptor complexes and radical ionic salts based on fullerenes. Rus Chem Rev. 1999;68:19–38.

    Article  CAS  Google Scholar 

  3. Stankevich IV, Sokolov VI. Advances in fullerene chemistry. Rus Chem Bull. 2004;9:1824–45.

    Article  Google Scholar 

  4. Karaulova EN, Bagrii EI. Fullerenes: functionalization and prospects for the use of derivatives. Rus Chem Rev. 1999;68:889–907.

    Article  CAS  Google Scholar 

  5. Kowalska E, Czerwosz E, Kozłowski M, Surga W, Radomska J. Structural, thermal, and electrical properties of carbonaceous films containing palladium nanocrystals. J Thermal Anal Calorim. 2010;101:737–42.

    Article  CAS  Google Scholar 

  6. Konarev DV, Khasanov SS, Saito G, Lyubovskaya RN. Design of molecular and ionic complexes of fullerene C60 with metal(II) octaethylporphyrins, MIIOEP (M = Zn, Co, Fe, and Mn) containing coordination M-N(ligand) and M-C(C60 ) bonds. Cryst Growth Des. 2009;9:1170–81.

    Article  CAS  Google Scholar 

  7. Konarev DV, Kovalevsky AYu, Otsuka A, Saito G, Lyubovskaya RN. Neutral and ionic complexes of C60 with metal dibenzyldithiocarbamates. Reversible dimerization of C60•− in ionic multicomponent complex [CrI(C6H6)2•+] (C60•−) 0.5[Pd(dbdtc)2]. Inorg Chem. 2005;44:9547–53.

    Article  CAS  Google Scholar 

  8. Konarev DV, Khasanov SS, Saito G, Otsuka A, Lyubovskaya RN. Ionic and neutral C60 complexes with coordination assemblies of metal tetraphenylporphyrins, MIITPP2·DMP (M = Mn, Zn). Coexistence of (C60 )2 dimers bonded by one and two single bonds in the same compound. Inorg Chem. 2007;46:7601–9.

    Article  CAS  Google Scholar 

  9. Konarev DV, Khasanov SS, Saito G, Vorontsov II, Otsuka A, Lyubovskaya RN, Antipin YuM. Crystal structure and magnetic properties of an ionic C60 complex with decamethylcobaltocene: (Cp *2 Co)2C60(C6H4Cl2, C6H5CN)2. Singlet-triplet transitions in the C60 2− anion. Inorg Chem. 2003;42:3706–8.

    Article  CAS  Google Scholar 

  10. Konarev DV, Khasanov SS, Kovalevsky AYu, Lopatin DV, Rodaev VV, Saito G, Náfrádi B, Forró L, Lyubovskaya RN. Supramolecular approach to the synthesis of [60]Fullerene-Metal dithiocarbamate complexes, (MII(R2dtc)2)x L C60 (M = Zn, Cd, Hg, Fe, and Mn; x = 1 and 2). The study of magnetic properties and photoconductivity. Cryst Growth Des. 2008;8:1161–72.

    Article  CAS  Google Scholar 

  11. Domrachev GA, Shevelev YuA, Cherkasov VK, Markin GV, Horshev SYa, Makarenko NP, Kaverin BS. Synthesis, property and thermodecomposition of bis-arene-chromium fullerides. In Proceedings of VI Int. Workshop on Fullerenes and Atomic Clasters, St. Petersburg, 2003, 151 (in Russian).

  12. Honnerscheid A, Dinnebier R, Jansen M. Reversible dimerization of C60 molecules in the crystal structure of the bis(arene)chromium fulleride [Cr(C7H8)]2C60. Acta Cryst. 2002;858:482–8.

    Google Scholar 

  13. Domrachev GA, Shevelev YuA, Cherkasov VK, Fukin GK, Horshev SYa, Markin GV, Kaverin BS. Synthesis, structure, and thermodestruction of bis(arene)chromium(I) fullerides. Docl Chem. 2004;395:74–7.

    CAS  Google Scholar 

  14. Honnerscheid A, Wullen L, Jansen M, Rahmer J, Mehring M. Dimer-formation in the bis(arene)chromium fulleride Cr(C7H8)2C60. J Chem Phys. 2001;115:7161–5.

    Article  CAS  Google Scholar 

  15. Domrachev GA, Shevelev YuA, Cherkasov VK, Markin GV, Fukin GK, Horshev SYa, Kaverin BS, Karnatchevich VL. Formation, properties, and thermal decomposition of bisarene chromium (I) and molybdenum (I) fullerides. Russ Chem Bull. 2004;53:1–4.

    Article  Google Scholar 

  16. Smirnova NN, Markin AV, Bykova TA, Boronina IE, Domrachev GA, Shevelev YuA, Markin GV. Thermodynamics of bis-(η6-diphenil)chromium (I) fulleride [(η6-Ph2)2Cr]+[C60]•− in the range from T → (0 to 360) K. J Chem Thermodyn. 2006;38:810–6.

    Article  CAS  Google Scholar 

  17. Ruchenin VA, Markin AV, Smirnova NN, Markin GV, Shevelev YuA, Cherkasov VK, Kuropatov VA, Ketkov SYu, Lopatin MA, Domrachev GA. Thermodynamics of the bis-(η6-t-butylphenyl)chromium fulleride [Cr{η6-(t-BuPh)}2]•+C •−60 . Bull Chem Soc Jpn. 2009;82:65–9.

    Article  CAS  Google Scholar 

  18. Ruchenin VA, Markin AV, Smirnova NN, Markin GV, Shevelev YuA, Kuropatov VA, Lopatin MA, Domrachev GA. The thermodynamic properties of bis6-ethoxybenzene)chromium fulleride from T → 0 to 340 K. Russ J Phys Chem A. 2010;84:928–33.

    Article  CAS  Google Scholar 

  19. Konarev DV, Khasanov SS, Saito G, Otsuka A, Yoshida Y, Lyubovskaya RN. Formation of single-bonded (C60 )2 and (C70 )2 dimers in crystalline ionic complexes of fullerenes. J Am Chem Soc. 2003;125:10074–83.

    Article  CAS  Google Scholar 

  20. Konarev DV, Khasanov SS, AYu Kovalevsky, Saito G, Otsuka A, Lyubovskaya RN. Structural aspects of two-stage dimerization in an ionic C60 complex with bis(benzene)chromium: Cr(C6H6)2·C60·C6H4Cl2. Dalton Trans. 2006;30:3716–20.

    Article  Google Scholar 

  21. Oszlanyi G, Bortel G, Faigel G, Granasy L, Stephens GM, Forro PW. Single C–C bond in (C60) 2−2 . Rhys Rev. 1996;54:11849–52.

    Article  CAS  Google Scholar 

  22. Wang W, Komatsu K, Murata Y, Shiro M. Synthesis and X-ray structure of dumb-bell-shaped C120. Nature. 1997;387:583–6.

    Article  CAS  Google Scholar 

  23. Iwasa Y, Arima T, Fleming RM, Siegrist T, Zhou O, Haddon RC, Rothberg LJ, Lyons KB, Carter HL Jr, Hebard AF, Tycko R, Dabbagh G, Krajewski JJ, Thomas GA, Yagi T. New phases of C60 synthesized at high pressure. Science. 1994;264:1570–2.

    Article  CAS  Google Scholar 

  24. Markin AV, Lebedev BV, Smirnova NN, Davydov VA, Rakhmanina AV. Calorimetric study of crystalline dimer and polymerized phases of C60 fullerene. Thermochim Acta. 2004;421:73–80.

    Article  CAS  Google Scholar 

  25. Varushchenko RM, Druzhinina AI, Sorkin EL. Low temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.

    Article  CAS  Google Scholar 

  26. Paukov IE, Kovalevskaya YA, Kiseleva IA, Shuriga TN. A low-temperature heat capacity study of natural lithium micas. J Thermal Anal Calorim. 2010;99:709–12.

    Article  CAS  Google Scholar 

  27. Gatta GD, Richardson MJ, Sarge SM, Stolen S. Standards, calibration, and guidelines in microcalorimetry. part 2. Calibration standards for differential calorimetry. Pure Appl Chem. 2006;78:1455–76.

    Article  Google Scholar 

  28. Coplen TB. Atomic weights of the elements 1999 (IUPAC Technical Report). Pure Appl Chem. 2001;73:667–83.

    Article  CAS  Google Scholar 

  29. Atkins PW. Physical chemistry. UK: Oxford University Press; 1978. p. 580.

    Google Scholar 

  30. Reed CA, Bolskar RD. Discrete fulleride anions and fullerenium cations. Chem Rev. 2000;100:1075–120.

    Article  CAS  Google Scholar 

  31. Heiney PA, Fisher JE, McChie AR, Romanow WJ, Denenstein AM, McCauley JP Jr, Smith AB, Cox DE. Orientational ordering transition in solid C60. Phys Rev Lett. 1991;66:2911–4.

    Article  CAS  Google Scholar 

  32. Dworkin A, Szwarc H, Leach S, Hare JP, Dennis TJ, Kroto HW, Taylor R, Walton DRM. Thermodynamic evidence for a phase transition in crystalline fullerene C60. CR Acad Sci Paris Ser II. 1991;312:979–82.

    CAS  Google Scholar 

  33. Lebedev BV, Zhogova KB, Bykova TA, Kaverin VS, Karnatsevich VL, Lopatin MA. Thermodynamics of C60 fullerene in the 0–340 K range. Rus Chem Bull. 1996;45:2113–7.

    Article  Google Scholar 

  34. McCullough JP, Scott DW. Calorimetry of non-reacting systems. London: Butterworth; 1968.

    Google Scholar 

  35. Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed with the financial support of the Russian Foundation of Basic Research (Projects No. 08-03-00214a, 09–03–97034-p-povol-a, 09-03-97045-p-povol-a, and 10-03-00968a), and the Ministry of Science and Education (Contract No P-337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markin, A.V., Ruchenin, V.A., Smirnova, N.N. et al. Thermodynamics of the bis-(η6-m-xylene)molybdenum fulleride [(η6-(m-xylene))2Mo]•+[C60]•− . J Therm Anal Calorim 105, 635–643 (2011). https://doi.org/10.1007/s10973-010-1195-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1195-9

Keywords

Navigation