Skip to main content
Log in

Kinetics and dissociation mechanism of heptaaqua-p-nitrophenolatostrontium(II) nitrophenol

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A single crystal of heptaaqua-p-nitrophenolatostrontium(II) nitrophenol (HNSN) was grown, and the structure was confirmed by UV–Vis–NIR, FT-IR, FT-NMR, and high-resolution X-ray diffraction (HRXRD) analyses. The dielectric loss, dielectric constant, and the mechanical strength of the crystal have already been reported. The dynamic, non-isothermal thermal analysis was carried out at different heating rates, and TG and DTG data were used for the interpretation of the mechanisms and kinetics of decomposition by means of a model fitting method, Coats–Redfern equation, and a model-free method, Kissinger and Flynn–Wall method. The values of activation energy (E) and the pre-exponential factor (ln A) of each stage of thermal decomposition at various linear heating rates were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dmitriev VG, Gurzadyan GG, Nicogosyan DN. Handbook of nonlinear optical crystals. New York: Springer Verlag; 1999.

    Google Scholar 

  2. Oana Carp RD, Budrugeac P, Niculescu M, Segal E. Nonisothermal decomposition kinetics of [CoC2O4·2.5H2O]n. J Therm Anal Calorim. 2010;:1–6. doi:10.1007/s10973-010-1037-9.

  3. Jose M, Sridhar B, Bhavannarayana G, Sugandhi K, Uthrakumar R, Justin Raj C, Tamilvendhan D, Das SJ. Growth, structural, optical, thermal and mechanical studies of novel semi-organic NLO active single crystal: heptaaqua-p-nitrophenolato strontium (I) nitrophenol. J Cryst Growth. 2010;312:793–9.

    Article  CAS  Google Scholar 

  4. Coats AW, Redfern JP. Kinetic parameters from thermo gravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  5. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data, II. Polym Lett. 1965;3:917–20.

    Article  CAS  Google Scholar 

  6. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;27:1702–6.

    Article  Google Scholar 

  7. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  8. Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100:109–18.

    Article  CAS  Google Scholar 

  9. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  10. Brandenburg K, Putz H. DIAMOND. Release 3.0c. Bonn: Crystal Impact GbR; 2005.

    Google Scholar 

  11. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 3rd ed. New York: John Wiley; 1978.

    Google Scholar 

  12. Su TT, Zhai YC, Jiang EH, Gong M. Studies on the thermal decomposition kinetics and mechanism of ammonium niobium oxalate. J Therm Anal Calorim. 2009;98:449–55.

    Article  CAS  Google Scholar 

  13. Papadopoulos C, Kantiranis N, Vecchio S, Lalia MK. Lanthanide complexes of 3-methoxy-salicylaldehyde. Thermal and kinetic investigation by simultaneous TG/DTG–DTA coupled with MS. J Therm Anal Calorim. 2010;99:931–8.

    Article  CAS  Google Scholar 

  14. Joseph K, Sridharan R, Gnanasekaran T. Kinetics of thermal decomposition of Th(C2O4)2·6H2O [J]. J Nucl Mater. 2000;281:129–39.

    Article  CAS  Google Scholar 

  15. Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. J Thermochim Acta. 2003;404(1):163–76.

    Article  CAS  Google Scholar 

  16. Zhang JJ, Wang RF, Li JB, Liu HM. Thermal decomposition of (4,4-dimethyl-2,2-bipyridine) tris(benzoate) europium(III) non-isothermal kinetics. J Therm Anal Calorim. 2001;65:241–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Kitheri Joseph, Scientific officer, Indira Gandhi Center for Atomic Research, Kalpakkam, for her fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeya Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, J., Lekshmana Thanu Lingam, T., Jose, M. et al. Kinetics and dissociation mechanism of heptaaqua-p-nitrophenolatostrontium(II) nitrophenol. J Therm Anal Calorim 103, 845–851 (2011). https://doi.org/10.1007/s10973-010-1192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1192-z

Keywords

Navigation