Skip to main content
Log in

Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of Y[Fe(CN)6]·4H2O has been studied in order to investigate the formation of the multi-ferroic oxide YFeO3. The starting material (Y[Fe(CN)6]·4H2O) and the decomposition products were characterized by IR spectroscopy, thermal analysis, X-ray powder diffraction (PXRD), and scanning electron microscopy. Metastable YFeO3 with hexagonal structure, space group P6 3 /mmc, was obtained by thermal decomposition of Y[Fe(CN)6]·4H2O at 600 °C in air. Orthorhombic YFeO3 was obtained by the same method at T ≥ 800 °C in air. The crystal structure of orthorhombic YFeO3 was refined by Rietveld analysis using PXRD data. We found that it was slightly deficient in Y3+, which is in agreement with the small amount of Y2O3 found as impurity in the sample. The formula of the orthorhombic phase is Y0.986FeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abakumov A, Haderman J, Van Tendeloo G, Antipov E. Chemistry and structure of anion-deficient perovskites with translational interfaces. J Am Ceram Soc. 2008;91(6):1807–13.

    Article  CAS  Google Scholar 

  2. Yuan GL, Or SW, Wang YP, Liu JM. Preparation and multi-properties of insulated single phase BiFeO3 ceramics. Solid State Commun. 2006;138:76–81.

    Article  CAS  Google Scholar 

  3. Yun KY, Noda M, Okuyama M. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J Appl Phys. 2004;96:3399–403.

    Article  CAS  Google Scholar 

  4. Moreira dos Santos A, Parashar S, Raju AR, Zhao YS, Cheetham AK, Rao CNR. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 2002;122:49–52.

    CAS  Google Scholar 

  5. Yang CH, Koo TY, Jeong YH. Orbital order, magnetism and ferroelectricity of multiferroic BiMnO3. J Magn Magn Mater. 2007;3:167–70.

    Google Scholar 

  6. Maiti R, Basu S, Chakravorty D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater. 2009;321:3274–7.

    Article  CAS  Google Scholar 

  7. Yin LH, Song WH, Jiao XL, Wu WB, Li LJ, Tang W, Zhu XB, Yang ZR, Dai JM, Zhang RL, Sun YP. A study of the magnetic and dielectric properties of YFe0.5Cr0.5O3. Solid State Commun. 2010;150:1074–6.

    Article  CAS  Google Scholar 

  8. Yamaguchi O, Takemura H, Yamashita M. Formation of yttrium iron oxides derived from alkoxides. J Electrochem Soc. 1991;138:1492–4.

    Article  CAS  Google Scholar 

  9. Wu L, Yu J, Zhang L, Wang X, Li S. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J Solid State Chem. 2004;177:3666–74.

    Article  CAS  Google Scholar 

  10. Du Buolay D, Maslem EN, Streltsov VA, Ishizawa N. A synchotron X-ray study of the electron density of YFeO3. Acta Cryst. 1995;B51:921–9.

    Google Scholar 

  11. Li J, Singh UG, Schladt TD, Stalick JK, Scott SL, Seshadri R. Hexagonal YFe1−x Pd x O3−δ: nonperovskite host compound for Pd2+ and their catalytic activity for CO oxidation. Chem Mater. 2008;20:6567–76.

    Article  CAS  Google Scholar 

  12. Inoue T, Seki N, Eguchi K, Arai H. Low temperature operation of solid electrolyte oxygen sensors using perovskite type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc. 1990;137:2523–7.

    Article  CAS  Google Scholar 

  13. Alcock CB, Doshi RC, Shen Y. Perovskite electrodes for sensors. Solid State Ionics. 1992;51:281–9.

    Article  CAS  Google Scholar 

  14. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens Actuators B. 1999;55:99–110.

    Article  Google Scholar 

  15. Lu X, Xie J, Shu H, Liu J, Yin C, Lin J. Microwave-assisted synthesis of nanocrystalline YFeO3 and study of its photoactivity. Mater Sci Eng B. 2007;138:289–92.

    Article  Google Scholar 

  16. Lentmaier J, Kemmler-Sack S, Knell G, Kessler P, Plies P. Selective reduction of nitrogen monoxide by catalysts based on composites between solid acid and perovskite in the presence of excess oxygen. Mater Res Bull. 1996;31:1269–76.

    Article  CAS  Google Scholar 

  17. Lentmaier J, Kemmler-Sack S. Bifunctional YFeO3-based catalyst used in the selective catalytic reduction on nitrogen monoxide in the presence of excess of oxygen. Mater Res Bull. 1998;33:461–73.

    Article  CAS  Google Scholar 

  18. Shen H, Xu J, Wu A, Zhao J, Shi M. Magnetic and thermal properties of perovskite YFeO3 single crystals. Mater Sci Eng B. 2009;157:78–80.

    Article  Google Scholar 

  19. Dahmani A, Taibi M, Nogues M, Aride J, Loudghiri E, Belayachi A. Magnetic properties of perovskite compounds YCr1−x Fe x O3 (0.5 ≤ x ≤ 1). Mater Chem Phys. 2002;77:912–7.

    Article  Google Scholar 

  20. Mathur S, Veith M, Rapalaviciute R, Shen H, Goya G, Martins Filho W, Berquo T. Molecule derived synthesis of nanocrystaline YFeO3 and investigations on its weak ferromagnetic behavior. Chem Mater. 2004;16:1906–13.

    Article  CAS  Google Scholar 

  21. Samal SL, Green W, Lofland SE, Ramanujachary KV, Das D, Ganguli AK. Study on the solid solution of YMn1−x Fe x O3: structural, magnetic and dielectric properties. J Solid State Chem. 2008;181:61–6.

    Article  CAS  Google Scholar 

  22. Cristóbal AA, Botta PM, Bercoff PG, Aglietti EF, Bertorello HR, Porto López JM. Mechanochemically assisted synthesis of yttrium-lanthanum orthoferrite: structural and magnetic characterization. J Alloy Compd. 2010;495:516–9.

    Article  Google Scholar 

  23. Kovachev S, Kovacheva D, Aleksovska S, Svab E, Krezhov K. Structure and magnetic properties of multiferroic YCr1−x Fe x O3 (0 ≤ x ≤ 1). J Optoelectron Adv Mater. 2009;11:1549–52.

    CAS  Google Scholar 

  24. Sugasawa M, Kikukawa N, Ishikawa N, Kayanot N, Kimurat T. Synthesis of Y–Fe–O ultrafine particles using inductively coupled plasma. J Aerosol Sci. 1998;5:675–86.

    Article  Google Scholar 

  25. Traversa E, Nunziante P, Sakamoto M, Sadaoka Y, Carotta MC, Martinelli G. Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6]·5H2O. J Mater Res. 1998;13:1335–43.

    Article  CAS  Google Scholar 

  26. Kondo N, Itoh H, Kurihara M, Sakamoto M, Aono H, Sadaoka Y. New high-yield preparation procedure of Ln[Fe(CN)6]·nH2O (Ln=La, Gd, and Lu) and their thermal decomposition into perovskite-type oxides. J Alloy Compd. 2006;408:1026–9.

    Article  Google Scholar 

  27. Navarro MC, Pannunzio-Miner EV, Pagola S, Gómez MI, Carbonio RE. Structural refinement of Nd[Fe(CN)6]·4H2O and study of NdFeO3 obtained by its oxidative thermal decomposition at very low temperatures. J Solid State Chem. 2005;178:847–54.

    Article  CAS  Google Scholar 

  28. Masuda Y, Seto Y, Wang X, Yukawa Y, Arii T. A thermal and structural study on lanthanum hexacyanocobaltate (III) pentahydrate, La[Co(CN)6]·5H2O. J Therm Anal Calorim. 2000;60:1033–41.

    Article  CAS  Google Scholar 

  29. Seto Y, Umemoto K, Arii T, Masuda Y. Synthesis and thermal decomposition of lanthanide hexacyanochromate (III) complexes, Ln[Cr(CN)6]·nH2O (Ln=La-Lu; n = 3, 4). J Therm Anal Calorim. 2004;76:165–77.

    Article  CAS  Google Scholar 

  30. Itagaki Y, Mori M, Hosoya Y, Aono H, Sadaoka Y. O3 and NO2 sensing properties of SmFe1−x Co x O3 perovskite oxides. Sens Actuators B. 2007;122:315–20.

    Article  Google Scholar 

  31. Medina Córdoba L, Gómez MI, Morán JA, de Aymonino PJ. Synthesis of the SrFeO2.5 and BaFeO3−x perovskites by thermal decomposition of SrNH4[Fe(CN)6]·3H2O and BaNH4[Fe(CN)6]. J Argent Chem Soc. 2008;96:1–12.

    Google Scholar 

  32. Gil DM, Carbonio RE, Gómez MI. Synthesis of Pb2Fe2O5 by thermal decomposition of Pb2[Fe(CN)6]·4H2O. J Chil Chem Soc. 2010;55(2):189–92.

    Article  CAS  Google Scholar 

  33. Navarro MC, Lagarrigue MC, De Paoli JM, Carbonio RE, Gómez MI. A new method of synthesis of BiFeO3 prepared by thermal decomposition of Bi[Fe(CN)6]·4H2O. J Therm Anal Calorim. 2010;102(2):655–60.

    Article  CAS  Google Scholar 

  34. Farhadi S, Rashidi N. Microwave-induced solid-state decomposition of the Bi[Fe(CN)6]·5H2O precursor: a novel route for the rapid and facile synthesis of pure and single phase BiFeO3 nanopowder. J Alloy Compd. 2010;503:439–44.

    Article  CAS  Google Scholar 

  35. Gómez MI, Morán JA, de Carbonio RE, Aymonino PJ. Synthesis of AFeO2.5+x (0 ≤ x ≤ 0.5; A = Sr, Ca) mixed oxides from the oxidative thermal decomposition of A[Fe(CN)5NO]·4H2O. J Solid State Chem. 1999;142:138–45.

    Article  Google Scholar 

  36. Gómez MI, Lucotti G, Morán JA, Aymonino PJ, Pagola S, Stephens P, Carbonio RE. Ab initio structure solution of BaFeO2.8−δ, a new polytype in the system BaFeO3 (2.5 ≤ y ≤ 3.0) prepared from the oxidative thermal decomposition of Ba[Fe(CN)5NO]·3H2O. J Solid State Chem. 2001;160:17–24.

    Article  Google Scholar 

  37. Malghe YS, Dharwadkar SR. LaCrO3 powder from lanthanum trisoxalatochromate (III) precursor, microwave aided synthesis and thermal characterization. J Therm Anal Calorim. 2008;91:915–8.

    Article  CAS  Google Scholar 

  38. Nakayama S, Okazaki M, Aung YL, Sakamoto M. Preparation of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinterability and conductivity. Solid State Ionics. 2003;158:133–9.

    Article  CAS  Google Scholar 

  39. Young RA. The Rietveld method. Oxford: Oxford Scientifics Publications; 1995.

    Google Scholar 

  40. Rodriguez Carbajal J. Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld method. Physica B. 1993;192:55–69.

    Article  Google Scholar 

  41. Finger LW, Cox DE, Jephcoat AP. A correction for powder diffraction peak asymmetry due to axial divergence. J Appl Cryst. 1994;27:892–900.

    Article  CAS  Google Scholar 

  42. Rai D, Danon J. Mossbauer spectroscopic studies of thermal decomposition of alkali ferricyanides. J Inorg Nucl Chem. 1975;37:2039–45.

    Article  Google Scholar 

  43. Fanning JC, Elrod CD, Franke BS, Melnik JD. Prussian blues from the thermal decomposition of H4[Fe(CN)6] and H3[Fe(CN)6]. J Inorg Nucl Chem. 1972;34:139–48.

    Article  CAS  Google Scholar 

  44. Martinez-Garcia R, Knobel M, Reguera E. Thermal-induced change in molecular magnets based on prussian blue analogues. J Phys Chem. 2006;110:7296–303.

    CAS  Google Scholar 

  45. Gallagher PK, Prescott B. Further studies of the thermal decomposition of Europium hexacyanoferrrate (III) and ammonium europium hexacyanoferrate (II). Inorg Chem. 1970;9(11):2510–2.

    Article  CAS  Google Scholar 

  46. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  47. Avila M, Reguera L, Rodriguez Hernandez J, Balmaceda J, Reguera E. Porous framework of T2[Fe(CN)6xH2O with T=Co, Ni, Cu, Zn and H2 storage. J Solid State Chem. 2008;181:2899–907.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.E.C. thanks ANPCYT for PICT2007 303, CONICET for PIP #11220090100995, and SECyT-UNC for Proyect 159/09. D.M.G. thanks CONICET for a fellowship. D.M.G, M.C.N., and M.I.G. thank CIUNT for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Inés Gómez.

Additional information

J. Guimpel and Raúl E. Carbonio are members of the Research Career of CONICET.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, D.M., Navarro, M.C., Lagarrigue, M.C. et al. Synthesis and structural characterization of perovskite YFeO3 by thermal decomposition of a cyano complex precursor, Y[Fe(CN)6]·4H2O. J Therm Anal Calorim 103, 889–896 (2011). https://doi.org/10.1007/s10973-010-1176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1176-z

Keywords

Navigation