Skip to main content
Log in

A simplified kinetic model for isothermal catalytic ignition

Propane/air mixture on platinum wire

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The ignition of catalytic combustion of the stoichiometric propane/air mixture on an isothermally heated platinum wire in different experimental conditions of total pressure and wire temperature is studied and discussed on the basis of a simplified kinetic model. The platinum wire is heated electrically with a specially designed power supply, which ensures a quasi-rectangular profile of its temperature. The ignition process is monitored by measuring the input power required to maintain a constant temperature of the wire during an exothermic catalytic reaction. The difference between the input powers recorded in air and in a fuel/air mixture, for the same wire temperature and gas total pressure, allows the elimination of the heat transferred to surroundings and conversion of the results into the catalytic reaction rate r R versus time curves of S-shaped form, illustrating the transition from kinetic to diffusion regime. The curve can be used to evaluate the ignition delay, as reported previously and also to fit different models to the data. The quasi-exponential increase of the isothermal reaction rate during the early stages of the process can be rationalized on the basis of a simplified kinetic model implying the multiplication of the adsorbed active intermediates. The adopted hypotheses allow the derivation of an analytical solution for the catalytic reaction rate before and during the ignition process, without diffusion limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pfefferle LD, Pfefferle WC. Catalysis in combustion. Catal Rev Sci Eng. 1987;29:219–67.

    Article  CAS  Google Scholar 

  2. Powell F. Ignition of gases and vapors. Ind Eng Chem. 1969;61:29–37.

    Article  CAS  Google Scholar 

  3. Laurendeau NM. Thermal ignition of methane-air mixtures by hot surfaces: a critical examination. Combust Flame. 1982;46:29–49.

    Article  CAS  Google Scholar 

  4. Arpentinier Ph, Cavani F, Trifiro F. The contribution of homogeneous reactions in catalytic oxidation processes: safety and selectivity aspects. Catal Today. 2005;99:15–22.

    Article  CAS  Google Scholar 

  5. Saint-Just J, der Kinderen J. Catalytic combustion: from reaction mechanism to commercial applications. Catal Today. 1996;29:387–95.

    Article  CAS  Google Scholar 

  6. Forzatti P, Groppi G. Catalytic combustion for the production of energy. Catal Today. 1999;54:165–80.

    Article  CAS  Google Scholar 

  7. Carroni R, Schmidt V, Griffin T. Catalytic combustion for power generation. Catal Today. 2002;75:287–95.

    Article  CAS  Google Scholar 

  8. Tahir SF, Koh CA. Catalytic destruction of volatile organic compound emissions by platinum based catalyst. Chemosphere. 1999;38:2109–16.

    Article  CAS  Google Scholar 

  9. O’Malley A, Hodnett BK. The influence of volatile organic compound structure on conditions required for total oxidation. Catal Today. 1999;54:31–8.

    Article  Google Scholar 

  10. Garetto TF, Apesteguía CR. Oxidative catalytic removal of hydrocarbons over Pt/Al2O3 catalysts. Catal Today. 2000;62:189–99.

    Article  CAS  Google Scholar 

  11. Shijie L, Weiyong Y, Dingye F, Hideo K. Kinetics of catalytic combustion in air over Pt/Al2O3/Al catalyst. React Kinet Catal Lett. 2005;85:205–13.

    Article  Google Scholar 

  12. Twigg MV. Roles of catalytic oxidation control of vehicle exhaust emissions. Catal Today. 2006;117:407–18.

    Article  CAS  Google Scholar 

  13. Griffin TA, Pfefferle LD. Gas phase and catalytic ignition of methane and ethane in air over platinum. AIChE J. 1990;36:861–70.

    Article  Google Scholar 

  14. Veser G, Schmidt LD. Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum. AIChE J. 1996;42:1077–87.

    Article  CAS  Google Scholar 

  15. Veser G, Ziauddin M, Schmidt LD. Ignition in alkane oxidation on noble-metal catalysts. Catal Today. 1999;47:219–28.

    Article  CAS  Google Scholar 

  16. Alkidas A, Durbetaki P. Ignition of a gaseous mixture by a heated surface. Combust Sci Technol. 1973;7:135–40.

    Article  Google Scholar 

  17. Song X, Williams WR, Schmidt LD, Aris R. Ignition and extinction of homogeneous–heterogeneous combustion: CH4 and C3H8 oxidation on Pt. Proc Combust Inst. 1990;23:1129–37.

    Google Scholar 

  18. Vlachos DG. Homogeneous–heterogeneous oxidation reactions over platinum and inert surfaces. Chem Eng Sci. 1996;51:2429–38.

    Article  CAS  Google Scholar 

  19. Rinnemo M, Deutschmann O, Behrendt F, Kasemo B. Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum. Combust Flame. 1997;111:312–26.

    Article  CAS  Google Scholar 

  20. Oancea D, Staicu O, Munteanu V, Razus D. Catalytic combustion of the stoichiometric n-butane/air mixture on isothermally heated platinum wire. Catal Lett. 2008;121:247–54.

    Article  CAS  Google Scholar 

  21. Staicu O, Munteanu V, Oancea D. The effect of operational parameters on the catalytic combustion of n-butane/air mixture on platinum wire. Catal Lett. 2009;129:124–9.

    Article  CAS  Google Scholar 

  22. Staicu O, Munteanu V, Oancea D. Overall kinetics for the catalytic ignition of ethane-air mixtures on platinum. Studia Universitatis Babes Bolyai Chem. 2009;54:193–202.

    CAS  Google Scholar 

  23. Staicu O, Razus D, Munteanu V, Oancea D. Heterogeneous catalytic ignition of n-butane/air mixture on platinum. Cent Eur J Chem. 2009;7:478–85.

    Article  CAS  Google Scholar 

  24. Oancea D, Munteanu V, Razus D. Isothermal catalytic combustion of n-pentane/air mixtures on platinum wire. J Therm Anal Calorim. 2010;102:993–1000.

    Google Scholar 

  25. Oancea D, Staicu O, Munteanu V. Kinetics of isothermal ignition of propane/air mixtures on platinum. Rev Roumaine Chim. 2010;55:211–6.

    CAS  Google Scholar 

  26. Garetto TF, Rincón E, Apesteguía CR. Deep oxidation of propane on Pt-supported catalysts: drastic turnover rate enhancement using zeolite supports. Appl Catal B Environ. 2004;48:167–74.

    Article  CAS  Google Scholar 

  27. Frank-Kamenetskii DA. Diffusion and heat transfer in chemical kinetics, chap 1. New York: Plenum Press; 1969.

    Google Scholar 

  28. Oancea D, Razus D, Mitu M, Constantinescu S. Hot wire ignition of premixed flammable fuel-air mixtures using isothermally heated platinum wires. Rev Roumaine Chim. 2002;47:91–7.

    CAS  Google Scholar 

  29. Peng YK, Dawson PT. The adsorption, desorption, and exchange reactions of oxygen, hydrogen, and water on platinum surfaces. I. Oxygen interaction. Can J Chem. 1974;52:3507–17.

    Article  CAS  Google Scholar 

  30. Deutschmann O, Behrendt F, Warnatz J. Formal treatment of catalytic combustion and catalytic conversion of methane. Catal Today. 1998;46:155–63.

    Article  CAS  Google Scholar 

  31. Reinke M, Mantzaras J, Schaeren R, Bombach R, Inauen A, Schenker S. High-pressure catalytic combustion of methane over platinum: in situ experiments and detailed numerical predictions. Combust Flame. 2004;136:217–40.

    Article  CAS  Google Scholar 

  32. Warnatz J, Maas U, Dibble RW. Combustion, chap 6. Berlin, Heidelberg: Springer; 1999.

    Google Scholar 

  33. Vannice MA. Kinetics of catalytic reactions, chap 5. New York: Springer; 2005.

    Google Scholar 

  34. Oxley JC, Smith JL, Marimaganti K. Developing small-scale tests to predict explosivity. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0983-6.

  35. Shen S-J, Wu S-H, Chi J-H, Wang Y-W, Shu C-M. Thermal explosion simulation and incompatible reaction of dicumyl peroxide by calorimetric technique. J Therm Anal Calorim. 2010. doi:10.1007/s10973-010-0916-4.

  36. Heynderickx MP, Thybaut JW, Poelman H, Poelman D, Marin GB. Kinetic modeling of the total oxidation of propane over CuO–CeO2/g-Al2O3. Appl Catal B. 2010;95:26–38.

    Article  CAS  Google Scholar 

  37. Kaisare NS, Deshmukh SR, Vlachos DG. Stability and performance of catalytic microreactors: simulations of propane catalytic combustion on Pt. Chem Eng Sci. 2008;63:1098–116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of CNCSIS through the Contract No. 38/2007 for the Project ID_1008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Oancea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oancea, D., Munteanu, V., Razus, D. et al. A simplified kinetic model for isothermal catalytic ignition. J Therm Anal Calorim 103, 911–916 (2011). https://doi.org/10.1007/s10973-010-1131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1131-z

Keywords

Navigation