Skip to main content
Log in

Co-firing of biomass with coals

Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 °C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C–O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa–Flynn–Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Di Blasi C. Combustion and gasification rates of lignocellulosic chars. Progress Energ Comb Sci. 2009;35:121–40.

    Article  Google Scholar 

  2. Vamvuka D, Salpigidou N, Kastanaki E, Sfakiotakis S. Possibility of using paper sludge in co-firing applications. Fuel. 2009;88:637–43.

    Article  CAS  Google Scholar 

  3. Várhegyi G, Szabó P, Jakab E, Till F. Mathematical modeling of char reactivity in Ar-O2 and CO2–O2 mixtures. Energ Fuels. 1996;10:1208–14.

    Article  Google Scholar 

  4. Ceylan K, Karaca H, Önal Y. Thermogravimetric analysis of pretreated Turkish lignites. Fuel. 1999;78:1109–16.

    Article  CAS  Google Scholar 

  5. Adánez J, De Diego LF, García-Labiano F, Abad A, Abanades JC. Determination of biomass char combustion reactivities for fbc applications by a combined method. Ind Eng Chem Res. 2001;40:4317–23.

    Article  Google Scholar 

  6. Otero M, Díez C, Calvo LF, García AI, Mordu A. Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass Bioenerg. 2002;22:319–29.

    Article  CAS  Google Scholar 

  7. Quanrum L, Haoquan H, Qiang Z, Shengwei Z, Gouohua C. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel. 2004;83:713–8.

    Article  Google Scholar 

  8. Mianowski A, Bigda R, Zymla V. Study on kinetıcs of combustion of brick-shaped carbonaceous materials. J Therm Anal Calorim. 2006;84:563–74.

    Article  CAS  Google Scholar 

  9. Franceschi E, Cascone I, Nole D. Thermal, XRD and spectrophotometric study on artificially degraded woods. J Therm Anal Calorim. 2008;91:119–25.

    Article  CAS  Google Scholar 

  10. Xu Q, Griffin GJ, Jiang Y, Preston C, Bicknell AD GP, Bradbury GP, White N. Study of burning behavior of small scale wood crib with cone calorimeter. J Therm Anal Calorim. 2008;91:787–90.

    Article  CAS  Google Scholar 

  11. Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ. Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim. 2008;93:611–7.

    Article  CAS  Google Scholar 

  12. Otero M, Gómez X, García AI, Morán A. Non-isothermal thermogravimetric analysis of the combustion of two different carbonaceous materials coal and sewage sludge. J Therm Anal Calorim. 2008;93:619–26.

    Article  CAS  Google Scholar 

  13. Suarez AC, Tancredi N, Cesar P, Pinheiro C, Yoshida MI. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim. 2010;100:1051–4.

    Article  Google Scholar 

  14. Kastanaki E, Vamvuka D. A comparative reactivity and kinetic study on the combustion of coal–biomass char blends. Fuel. 2006;85:1186–93.

    Article  CAS  Google Scholar 

  15. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.

    Article  CAS  Google Scholar 

  16. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis. Appl Energ. 2010;87:141–8.

    Article  CAS  Google Scholar 

  17. Sahu SG, Sarkar P, Chakraborty N, Adak AK. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010;91:369–78.

    Article  CAS  Google Scholar 

  18. Sanchez ME, Otero M, Gomez X, Moran A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energ. 2009;34:1622–7.

    Article  CAS  Google Scholar 

  19. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  20. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  23. Flynn JH, Wall LA. Structures and thermal analysis of 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  24. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  25. Avrami MJ. Kinetics of phase change. I. General theory. Chem Phys. 1939;7:1103–12.

    CAS  Google Scholar 

  26. Avrami MJ. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. Chem Phys. 1940;8:212–24.

    CAS  Google Scholar 

  27. Avrami MJ. Kinetics of phase change. III. Granulation, phase change, and microstructure. Chem Phys. 1941;9:177–84.

    CAS  Google Scholar 

  28. Flynn JH, Wall LA. A general treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Google Scholar 

  29. Yanfen L, Xiaoqian M. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge. Appl Energ. 2010;87:3526–32.

    Article  Google Scholar 

  30. Di Nola G, de Jong W, Spliethoff H. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions: partitioning of the fuel-bound nitrogen. Fuel Process Technol. 2010;91:103–15.

    Article  Google Scholar 

  31. Shevla G. Comprehensive analytical chemistry. In: Shevla G, editor. Analytical infrared spectroscopy, vol. VI. Amsterdam: Elsevier; 1976. pp. 334.

  32. Karabakan A, Yürüm Y. Effect of the mineral matrix in the reactions of shales. 2. Oxidation reactions of Turkish Göynük and U.S. Western Reference shales. Fuel. 2000;79:785–92.

    Article  CAS  Google Scholar 

  33. Pakdel H, Grandmaison JL, Roy C. Analysis of wood vacuum pyrolysis solid residues by diffuse reflectance infrared Fourier transform spectroscopy. Can J Chem. 1989;67:310–4.

    Article  CAS  Google Scholar 

  34. Pandey KK. Study of the effect of photo-irradiation on the surface chemistry of wood. Polym Degrad Stab. 2005;90:9–20.

    Article  CAS  Google Scholar 

  35. Bernstein MP, Cruikshank DP, Sandford SA. Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus. 2005;179:527–34.

    Article  CAS  Google Scholar 

  36. Lemus R. Vibrational excitations in H2O in the framework of a local model. J Mol Spectrosc. 2004;225:73–92.

    Article  CAS  Google Scholar 

  37. Wu Y-W, Sun S-Q, Zhou Q, Tao J-X, Noda I. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers. J Mol Struct. 2008;882:107–15.

    Article  CAS  Google Scholar 

  38. Kök MV. Temperature-controlled combustion and kinetics of different rank coal samples. J Therm Anal Calorim. 2005;79:175–80.

    Article  Google Scholar 

  39. Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  40. Otero M, Calvo LF, Gil MV, Garcia AI, Moran A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99:6311–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuda Yürüm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumanli, A.G., Taş, S. & Yürüm, Y. Co-firing of biomass with coals. J Therm Anal Calorim 103, 925–933 (2011). https://doi.org/10.1007/s10973-010-1126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1126-9

Keywords

Navigation