Skip to main content
Log in

Crystallization process analysis for Se0.95In0.05 and Se0.90In0.10 chalcogenide glasses using the contemporary isoconversional models

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carrying out crystallization studies for both Se0.95In0.05 and Se0.90In0.10 chalcogenide glasses under non-isothermal conditions at different heating rates, it was realized that a rate controlling process occurs where random nucleation of one- to two-dimensional growth is accompanied with the introduction of up to 10 at% In into glassy Se matrix. The crystallization kinetics together with its dimensionality has been studied using the four currently used isoconversional models (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Tang, and Starink). The activation energy of crystallization (E c) has been determined using these indicated four models where a satisfactory concurrence is achieved. The value of E c shows a decrease while increasing both the In-content as well as the extent of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford: Clarendon Press; 1971.

    Google Scholar 

  2. Kotkata MF. Transports and structural properties of non-crystalline chalcogenide semiconductors. D.Sc. Thesis, Hungarian Academy of Sciences: Budapest, Hungary; 1993.

  3. Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M10 (M = In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim. 2007;87:343–8.

    Article  CAS  Google Scholar 

  4. Sharma A, Barman PB. Effect of Bi incorporation on the glass transition kinetics of Se85Te15 glassy alloy. J Therm Anal Calorim. 2009;96:413–7.

    Article  CAS  Google Scholar 

  5. Kotkata MF, Abdel-Wahab FA, Al-Kotb MS. Effect of In-content on the optical properties of a-Se films. Appl Surf Sci. 2009;255:9071–7.

    Article  CAS  Google Scholar 

  6. Shukla S, Kumar S. Effect of Sb incorporation on the dark conductivity and photoconductivity of Se75In25 glassy alloy thin films. Physica B. 2010;405:4307–12.

    Article  CAS  Google Scholar 

  7. Kotkata MF, Mansour ShA. Study of glass transition kinetics of selenium matrix alloyed with up to 10% indium. J. Therm Anal Calorim. 2010; doi:10.1007/s10973-010-0963-x.

  8. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  9. Kotkata MF, Kamal GM, El-Mously MK. Electrical conductivity and crystallization of amorphous selenium doped with tellurium. Indian J Technol. 1982;20:390–5.

    CAS  Google Scholar 

  10. Hay JN. Application of the modified Avrami equations to polymer crystallization kinetics. Br Polym J. 1971;3:74–82.

    Article  CAS  Google Scholar 

  11. Henderson DW. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids. 1979;30:301–15.

    Article  CAS  Google Scholar 

  12. Lopez-Alemany PL, Vazquez J, Villares P, Jimenez-Garay R. Theoretical analysis on the mechanism and transformation kinetics under non-isothermal conditions application to the crystallization of semiconducting Sb0.16As0.36Se0.48 alloy. Mater Chem Phys. 2000;65:150–7.

    Article  CAS  Google Scholar 

  13. Kotkata MF, Mahmoud EA. Non-isothermal crystallization kinetic studies on amorphous chalcogenide semiconductors. Mater Sci Eng. 1982;54:163–8.

    Article  CAS  Google Scholar 

  14. Brown ME, Dollomore D, Galwey AK. Reaction in solid state. Comprehensive chemical kinetics. 22nd ed. Amsterdam: Elsevier; 1980.

    Google Scholar 

  15. Sharp JH, Brindley GW, Narahari Achar BN. Numerical data for some commonly used solid state reaction equations. J Am Ceram Soc. 1966;49:379–82.

    Article  CAS  Google Scholar 

  16. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  17. Kotkata MF. Trends in the microhardness of mono-component and multi-component chalcogenide glasses. J Mater Sci. 1991;26:4869–77.

    Article  CAS  Google Scholar 

  18. Šimon P. Isoconversional methods. Fundamentals, meaning and application. J Therm Anal Calorim. 2004;76:123–32.

    Article  Google Scholar 

  19. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  20. Akahira T, Sunose T. Joint convention of four electrical institutes. Res Report Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  22. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1966;4:323–8.

    Article  CAS  Google Scholar 

  23. Tang W, Lui Y, Zhang H, Wang C. New approximation formula for Arrhenius temperature integral. Thermochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  24. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  25. Coats AW, Redfern JP. Parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  26. Doyle CD. Series approximations to the equations of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  27. Kotkata MF. Phase property study of semiconductor selenium: part I. J Mater Sci. 1992;27:4847–57.

    Article  CAS  Google Scholar 

  28. Shukla R, Agarwal P, Kumar A. Crystallization kinetics in glassy Se100−x In x system using isoconversional methods. Chalcogenide Lett. 2010;7:249–55.

    CAS  Google Scholar 

  29. Pacurariu C, Lazau RI, Lazau I, Lanos R, Vlase T. Influence of the specific surface area on crystallization process kinetics of some silica gels. J Therm Anal Calorim. 2009;97:409–14.

    Article  CAS  Google Scholar 

  30. Biswas K, Sontakk AD, Majumder M, Annapurna K. Non-isothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass. J Therm Anal Calorim. 2010;101:143–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Kotkata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotkata, M.F., Mansour, S.A. Crystallization process analysis for Se0.95In0.05 and Se0.90In0.10 chalcogenide glasses using the contemporary isoconversional models. J Therm Anal Calorim 103, 957–965 (2011). https://doi.org/10.1007/s10973-010-1120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1120-2

Keywords

Navigation