Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) composites

Abstract

Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) were determined by means of three-point bending flexural tests and dynamic mechanical and thermal analysis. The elastic modulus, storage modulus, loss modulus, and damping parameter of the composites at fibre contents of 10, 20, 30, and 40% in mass were determined, as well as those of the unfilled matrix. There was a correlation between the elastic modulus and storage modulus of the composites. Moreover, the elastic and viscoelastic properties of the composites were highly influenced by fibre content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–74.

    Article  CAS  Google Scholar 

  2. 2.

    Martha A, Rolando R, Jafet Q, Alfredo M. Evaluation by torque-rheometer of suspensions of semi-rigid and flexible natural fibers in a matrix of poly(vinyl chloride). Polym Compos. 1997;18(4):549–60.

    Article  Google Scholar 

  3. 3.

    Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64.

    Article  CAS  Google Scholar 

  4. 4.

    FAO. Food and agricultural commodities production. 2009. http://faostat.fao.org/site/339/default.aspx. Cited 2009 23rd October.

  5. 5.

    Reis JML. Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construct Build Mater. 2006;20(9):673–8.

    Article  Google Scholar 

  6. 6.

    Vazquez A, Dominguez VA, Kenny JM. Bagasse fiber-polypropylene based composites. J Thermoplast Compos Mater. 1999;12(6):477–97.

    CAS  Google Scholar 

  7. 7.

    Willoughby D. Plastic piping handbook. New York: McGraw-Hill; 2002.

    Google Scholar 

  8. 8.

    Nass L. Encyclopedia of PVC. New York: Marcel Dekker; 1985.

    Google Scholar 

  9. 9.

    Kokta BV, Maldas D, Daneault C, Béland P. Composites of poly(vinyl chloride) and wood fibers. Part II: Effect of chemical treatment. Polym Compos. 1990;11(2):84–9.

    Article  CAS  Google Scholar 

  10. 10.

    Kokta BV, Maldas D, Daneault C, Béland P. Composites of polyvinyl chloride-wood fibers. III: Effect of silane as coupling agent. J Vinyl Technol. 1990;12(3):146–53.

    Article  CAS  Google Scholar 

  11. 11.

    Fatih M, Laurent MM, Julia AK. Effects of impact modifiers on the properties of rigid PVC/wood-fiber composites. J Vinyl Addit Technol. 2000;6(3):153–7.

    Article  Google Scholar 

  12. 12.

    Bhavesh LS, Laurent MM, Patricia AH. Novel coupling agents for PVC/wood-flour composites. J Vinyl Addit Technol. 2005;11(4):160–5.

    Article  Google Scholar 

  13. 13.

    Maldas D, Kokta BV, Daneault C. Composites of polyvinyl chloride-wood fibers: IV. Effect of the nature of fibers. J Vinyl Technol. 1989;11(2):90–9.

    Article  CAS  Google Scholar 

  14. 14.

    Ge XC, Li XH, Meng YZ. Tensile properties, morphology, and thermal behavior of PVC composites containing pine flour and bamboo flour. J Appl Polym Sci. 2004;93(4):1804–11.

    Article  CAS  Google Scholar 

  15. 15.

    Hocine D, Boukerrou A, Founas R, Rabouhi A, Kaci M, Farenc J, et al. Preparation and characterization of poly(vinyl chloride)/virgin and treated sisal fiber composites. J Appl Polym Sci. 2007;103(6):3630–6.

    Article  Google Scholar 

  16. 16.

    Bakar AA, Hassan A, Yusof AFM. The effect of oil extraction of the oil palm empty fruit bunch on the processability, impact, and flexural properties of PVC-U composites. Int J Polym Mater. 2006;55(9):627–41.

    Article  Google Scholar 

  17. 17.

    Samir K. Preparation and properties of composites made from rice straw and poly(vinyl chloride) (PVC). Polym Adv Technol. 2004;15(10):612–6.

    Article  Google Scholar 

  18. 18.

    Zheng Y-T, Cao D-R, Wang D-S, Chen J-J. Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Composites Part A. Appl Sci Manuf. 2007;38(1):20–5.

    Article  Google Scholar 

  19. 19.

    Zainudin ES, Sapuan SM, Abdan K, Mohamad MTM. Mechanical properties of compression molded banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites. Polym Plast Technol Eng. 2009;48(1):97–101.

    Article  CAS  Google Scholar 

  20. 20.

    Zainudin ES, Sapuan SM, Abdan K, Mohamad MTM. Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites. Mater Des. 2009;30(3):557–62.

    Article  CAS  Google Scholar 

  21. 21.

    Owolabi O, Czvikovszky T. Composite materials of radiation-treated coconut fiber and thermoplastics. J Appl Polym Sci. 1988;35(3):573–82.

    Article  CAS  Google Scholar 

  22. 22.

    Lee SC, Mariatti M. The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Mater Lett. 2008;62(15):2253–6.

    Article  CAS  Google Scholar 

  23. 23.

    Wang N, Zhang X, Ma X, Fang J. Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym Degrad Stab. 2008;93(6):1044–52.

    Article  CAS  Google Scholar 

  24. 24.

    Ray D, Sarkar BK, Das S, Rana AK. Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibres. Compos Sci Technol. 2002;62(7–8):911–7.

    CAS  Google Scholar 

  25. 25.

    Pothan LA, Oommen Z, Thomas S. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol. 2003;63(2):283–93.

    Article  CAS  Google Scholar 

  26. 26.

    Martínez-Hernández AL, Velasco-Santos C, de-Icaza M, Castaño VM. Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos Part B. 2007;38(3):405–10.

    Article  Google Scholar 

  27. 27.

    Idicula M, Malhotra SK, Joseph K, Thomas S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol. 2005;65(7–8):1077–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universiti Putra Malaysia for financial support of this study and fellowship funding for the main author through the Research University Grant Scheme (RUGS; Project no: 05/01/07/0190RU) and Graduate Research Fellowship (GRF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riza Wirawan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wirawan, R., Sapuan, S.M., Robiah, Y. et al. Elastic and viscoelastic properties of sugarcane bagasse-filled poly(vinyl chloride) composites. J Therm Anal Calorim 103, 1047–1053 (2011). https://doi.org/10.1007/s10973-010-1079-z

Download citation

Keywords

  • Bagasse
  • Composite
  • Elasticity
  • Viscoelasticity
  • Thermomechanical