Skip to main content
Log in

Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH , ΔG , and ΔS ) of the decomposition reaction of NH4NiPO4·6H2O were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goñi A, Pizarro JL, Lezama LM, Barberis GE, Arriortua MI, Rojo T. Synthesis, crystal structure and spectroscopic properties of the NH4NiPO4·nH2O (n = 1, 6) compounds; magnetic behaviour of the monohydrated phase. J Mater Chem. 1996;6:421–7.

    Article  Google Scholar 

  2. Li YF, Cui W, Zhu GS, Qiu SL, Fang QR, Wang CL. Hydrothermal synthesis and characterization of Ni3(PO4)2·8H2O with 8-ring and 4-ring network structure. Chem J Chin Univ. 2002;23:1480–2.

    CAS  Google Scholar 

  3. Wu WW, Fan YJ, Wu XH, Liao S, Li SS. Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline NH4MnPO4·H2O. J Phys Chem Solids. 2009;70:584–7.

    Article  CAS  Google Scholar 

  4. Koleva VG. Metal–water interactions and hydrogen bonding in dittmarite-type compounds M′M′′PO4·H2O(M′ = K+, NH4 +; M′′ = Mn2+, Co2+, Ni2+)—Correlations of IR spectroscopic and structural data. Spectrochim Acta A. 2005;62:1196–202.

    Article  Google Scholar 

  5. Carling SG, Day P, Visser D. Crystal and magnetic structures of layer transition metal phosphate hydrates. Inorg Chem. 1995;34:3917–27.

    Article  CAS  Google Scholar 

  6. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  7. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  8. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  9. Boonchom B, Puttawong S. Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B. 2010;405:2350–5.

    Article  CAS  Google Scholar 

  10. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

  11. Rajić N, Ristić A, Kaučič V. On the possibility of the preparation open framework manganese phosphate. Zeolites. 1996;17:304–9.

    Article  Google Scholar 

  12. Boonchom B, Danvirutai C, Santi Maensiri S. Soft solution synthesis, non-isothermal decomposition kinetics and characterization of manganese dihydrogen phosphate dihydrate Mn(H2PO4)2·2H2O and its thermal transformation. Mater Chem Phys. 2008;109:404–10.

    Article  CAS  Google Scholar 

  13. Onoda H, Sugino N, Kojima K, Nariai H. Mechanochemical effects on synthesis and properties of manganese–neodymium diphosphates. Mater Chem Phys. 2003;82:831–6.

    Article  CAS  Google Scholar 

  14. Šoptrajanov B, Jovanovski G, Pejov L. Very low H–O–H bending frequencies. III. Fourier transform infrared study of cobalt potassium phosphate monohydrate and manganese potassium phosphate monohydrate. J Mol Struct. 2002;613:47–54.

    Article  Google Scholar 

  15. Wu XX, Wu WW, Liao S, Fan YJ, Li SS. Preparation via solid-state reaction at room temperature and characterization of layered nanocrystalline KMnPO4·H2O. J Alloys Compd. 2009;479:541–4.

    Article  CAS  Google Scholar 

  16. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  17. Budrugeac P, Muşat V, Segal E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor. J Therm Anal Calorim. 2007;88:699–702.

    Article  CAS  Google Scholar 

  18. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771–7.

    Article  CAS  Google Scholar 

  19. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1533–8.

    Article  CAS  Google Scholar 

  20. Danvirutai C, Noisong P, Youngme S. Some thermodynamic functions and kinetics of thermal decomposition of NH4MnPO4·H2O in nitrogen atmosphere. J Therm Anal Calorim. 2010;100:117–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Guangxi Natural Scientific Foundation of China (Grant No. 0832111), and the Guangxi Science and Technology Agency Research Item of China (Grant No. 0895002–9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wu, W., Li, S. et al. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim 103, 805–812 (2011). https://doi.org/10.1007/s10973-010-1057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1057-5

Keywords

Navigation