Skip to main content
Log in

A complete thermo-mechanical study of a NiTiCu shape memory alloy wire

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Shape memory alloy mechanical performance and phase transformation temperatures depend on the composition of the alloy, on the thermo-mechanical history, and on the applied load. For this reason is important to execute a deep investigation of the SMA material before its final use. In this study we investigate the thermo-mechanical behavior of a NiTiCu wire under stress-free condition through the differential scanning calorimetry and the electrical resistance measurements and under load through tensile and hysteresis tests. The phase transformation temperature dependence on the applied load, by means of the Clausius–Clapeyron equation, as well as on the thermal treatment temperature are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Funakubo H. Shape memory alloys. London: Gordon and Breach Science Publishers; 1984.

    Google Scholar 

  2. Otsuka K, Wayman CM. Shape memory materials. Cambridge: Cambridge University Press; 1998.

    Google Scholar 

  3. Nam TH, Saburi T, Nakata Y, Shimizu K. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloy. Mater Trans. 1990;31:1050–6.

    CAS  Google Scholar 

  4. Degeratu S, Rotaru P, Manolea Gh, Manolea HO, Rotaru A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim. 2009;97:695–700.

    Article  CAS  Google Scholar 

  5. Torra V, Auguet C, Isalgue A, Lovey FC, Sepulveda A, Soul H. Metastable effects on martensitic transformation in SMA. Part VIII Temperature effects on cycling. J Therm Anal Calorim. 2009. doi:10.1007/s10973-009-0613-3.

  6. Carreras G, Isalgue A, Torra V, Lovey FC, Soul H. Metastable effects on martensitic transformation in SMA. Part V. Fatigue-life and detailed hysteresis behavior in NiTi and Cu-based alloys. J Therm Anal Calorim. 2008;91(2):575–9.

    Article  CAS  Google Scholar 

  7. Auguet C, Isalgue A, Lovey FC, Pelegrina JL, Ruiz S, Torra V. Metastable effects on martensitic transformation in SMA. Part III. Tentative temperature effects in a NiTi alloy. J Therm Anal Calorim. 2007;89(2):537–42.

    Article  CAS  Google Scholar 

  8. Miller DA, Lagoudas DC. Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Mater Sci Eng A. 2001;308:161–75.

    Article  Google Scholar 

  9. Fukuda T, Kakeshita T, Kitayama M, Saburi T. Effect of aging on martensitic transformation in a shape memory Ti–40.5Ni–10Cu alloy. J Phys IV. 1995;5:717–22.

    CAS  Google Scholar 

  10. Uchil J. Shape memory alloys—characterization techniques. J Phys. 2002;58:1131–9.

    CAS  Google Scholar 

  11. Duerig TW, Melton KN, Stockel D, Wayman CM. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann; 1990.

    Google Scholar 

  12. Auguet C, Isalgue A, Torra V, Lovey FC, Pelegrina JL. Metastable effects on martensitic transformation in SMA. PartVII Aging problems in NiTi. J Therm Anal Calorim. 2008;92:63–71.

    Article  CAS  Google Scholar 

  13. Artiaga R, García A, García L, Varela A, Mier JL, Naya S, Gra M. DMTA study of a nickel-titanium wire. J Therm Anal Calorim. 2002;70:199–207.

    Article  CAS  Google Scholar 

  14. Lo YC, Wu SK, Horng HE. A study of B2-B19-B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall Mater. 1993;41:747–59.

    Article  CAS  Google Scholar 

  15. Uchil J, Mohanchandra KP, Ganesh Kumara K, Mahesh KK. Study of critical dependence of stable phases in nitinol on heat treatment using electrical resistivity probe. Mater Sci Eng A. 1998;251:58–63.

    Article  Google Scholar 

  16. Wu SK, Lin HC, Lin TY. Electrical resistivity of Ni–Ti binary and Ti–Ni-X (X = Fe, Cu) ternary shape memory alloys. Mater Sci Eng A. 2006;438–440:536–9.

    Google Scholar 

  17. Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. J Mech Phys Solids. 1995;43:1243–81.

    Article  CAS  Google Scholar 

  18. Marony Sousa Farias Nascimento M, de Araújo CJ, da Rocha Neto JS, Nogueira de Lima AM. Electro-thermomechanical characterization of Ti–Ni shape memory alloy thin wires. Mater Res. 2006;9:15–9.

    Google Scholar 

  19. Nam TH, Saburi T, Shimizu K. Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater Trans. 1990;31:956–67.

    Google Scholar 

  20. Otsuka K, Ren X. Physical metallurgy of Ni–Ti-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.

    Article  CAS  Google Scholar 

  21. Wang ZG, Zu XT, Huo Y. Effect of heating/cooling rate on the transformation temperatures in NiTiCu shape memory alloys. Thermochim Acta. 2005;436:153–5.

    Article  CAS  Google Scholar 

  22. Nurveren K, Akdoğan A, Huang WM. Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys. J Mater Process Technol. 2008;196:129–34.

    Article  CAS  Google Scholar 

  23. Wang G, Jiang XX, Nikanpour D. Measurement of specific heat, latent heat and phase transformation temperatures of shape memory alloys. High Temp High Press. 2008;37:91–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Nespoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nespoli, A., Besseghini, S. A complete thermo-mechanical study of a NiTiCu shape memory alloy wire. J Therm Anal Calorim 103, 821–826 (2011). https://doi.org/10.1007/s10973-010-1042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1042-z

Keywords

Navigation