Skip to main content
Log in

Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite thin film, comprising of 10 wt% of thermotropic liquid crystalline polymer (TLCP, Rodrun LC5000) and polypropylene (PP), prepared by a two-step method were investigated using differential scanning calorimetry (DSC) and thermogravimetry (TG), respectively. The DSC results revealed that Mo method was suitable for the crystallization behavior description of both neat PP and 10 wt%TLCP/PP films. The in situ formation of TLCP fibrils in the PP matrix led to reduction in both values of half-time of crystallization (t 1/2) and the kinetic parameter of Mo equation F(T), resulting in a significant increase in the crystallization rate of PP phase. The remarkable lower in crystallization activation energy of the composite films also confirmed that in situ formed TLCP fibrils could influence the molecular chain of PP easier to crystallize, and hence resulted in the faster crystallization rate. The nucleation activity value of composite indicated that TLCP fibrils acted as effective nucleating agents. From TG results and the higher decomposition activation energy, the thermal stability of the composite can be improved by the presence of in situ-formed TLCP fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimetry

DTG:

Differential thermogravimetry

HBA:

p-Hydroxy benzoic acid

PBT:

Poly(butylene terephthalate)

PET:

Polyethylene terephthalate

PP:

Polypropylene

TG:

Thermogravimetric analyzer

TLCP:

Thermotropic liquid crystalline polymer

TP:

Thermoplastic

E :

Activation energy

k :

The rate constant of Avrami equation

k c :

The kinetic crystallization rate constant

K(T):

The kinetic parameter of Ozawa equation

F(T):

The kinetic parameter of Mo equation

m :

Ozawa exponent

n :

Avrami exponent

t :

Time

t 1/2 :

Half-time of crystallization

T c :

Crystallization temperature

T o :

The onset crystallization temperatures

T :

The end crystallization temperature

T max :

The maximum decomposition temperature

T onset :

The onset decomposition temperature

X t :

Relative crystallinity

ϕ:

Cooling rate

φ:

Nucleation activity

θ:

T − Tmax

References

  1. Handlos AA, Baird DGB. Processing and associated of in situ composites based on thermotropic liquid crystalline polymers and thermoplastics. JMS Rev Macromol Chem Phys. 1995;C35(2):183–238.

    CAS  Google Scholar 

  2. Jin X, Li W. Correlation of mechanical properties with morphology, rheology, and processing parameters for TLCP containing blends. JMS Rev Macromol Chem Phys. 1995;35(1):1–13.

    Google Scholar 

  3. Tjong SC. Structure, morphology, mechanical and thermal characteristics of the in situ composites based on liquid crystalline polymers and thermoplastics. Mater Sci Eng Rep. 2003;41:1–60.

    Article  Google Scholar 

  4. Dutta D, Fruitwala H, Kohli A, Wiess RA. Polymer blends containing liquid crystals and thermoplastics. Polym Eng Sci. 1990;30:1005–18.

    Article  CAS  Google Scholar 

  5. Qin Y, Brydon DL, Mather RR, Wardman RH. Fibers from polypropylene and liquid crystalline blends: 3. A comparison of polyblend fibers containing Vectra A900, Vectra B950 and Rodrun LC3000. Polymer. 1993;34:3597–604.

    Article  CAS  Google Scholar 

  6. Saengsuwan S, Bualek-Limcharoen S, Mittchell GR, Olley RH. Thermotropic liquid crystalline polymer (Rodrun LC5000)/polypropylene in situ composite films: rheology, molecular orientation and tensile properties. Polymer. 2003;44:3407–15.

    Article  CAS  Google Scholar 

  7. Kiss G. In situ composites: blends of isotropic polymers and thermotropic liquid crystalline polymers. Polym Eng Sci. 1987;27(6):410–23.

    Article  CAS  Google Scholar 

  8. Blizard KG, Baird DG. The morphology and rheology of polymer blends containing a liquid crystalline copolyester. Polym Eng Sci. 1987;27:653–62.

    Article  CAS  Google Scholar 

  9. Wu S. Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polym Eng Sci. 1987;27(5):335–43.

    Article  CAS  Google Scholar 

  10. Heino MT, Vainio TP. In: Cheremisinoff NP, Cheremisinoff PN, editors. Effect of viscosity ratio and processing conditions on the morphology of blends of liquid crystalline polymer and polypropylene. Handbook of applied polymer processing technology. New York: Marcel Dekker, Inc.; 1996.

    Google Scholar 

  11. Xu QW, Man HC, Lau WS. The effect of a third component on the morphology and mechanical properties of liquid-crystalline polymer and polypropylene in situ composites. Comp Sci Technol. 1999;59:291–6.

    Article  CAS  Google Scholar 

  12. Xu W, Ge M, He P. Non-isothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci B. 2002;40:408–14.

    Article  CAS  Google Scholar 

  13. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermo Acta. 2005;427:117–28.

    Article  CAS  Google Scholar 

  14. Jain S, Goossens H, Dulin MV, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46:8805–18.

    CAS  Google Scholar 

  15. Varga J. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol 1, chap 3. London: Chapman and Hall; 1995.

  16. Friedrich K, Evstatiev M, Fakirov S, Evstatiev O, Ishii M, Harrass M. Microfibrillar reinforced composites from PET/PP blends: Processing, morphology and mechanical properties. Comp Sci Technol. 2005;65(1):107–16.

    Article  CAS  Google Scholar 

  17. Zhang H, Zhang Q, Sun C. Nonisothermal crystallization kinetics of polypropylene/polyethersulfone blend. Polym Bull. 2008;60:291–300.

    Article  CAS  Google Scholar 

  18. Sukananta P, Bualek-Limcharoen S. In situ modulus enhancement of polypropylene monofilament through blending with liquid-crystalline copolyester. J Appl Polym Sci. 2003;90:1337–46.

    Article  CAS  Google Scholar 

  19. Minkova LI, Paci M, Pracella M, Magagnini P. Crystallization behavior of polyphenylene sulfide in blends with a liquid crystalline polymer. Polym Eng Sci. 1992;32:57–64.

    Article  CAS  Google Scholar 

  20. Yan H, Xu J, Mai K, Zeng H. Crystallization of poly(butylene terephthalate) blends containing liquid crystalline polymer component. Polymer. 1999;40:4865–75.

    Article  CAS  Google Scholar 

  21. Gopakumar TG, Ghadage RS, Ponrathnam S, Rajan CR, Fradet A. Poly(phenylene sulfide)/liquid crystalline polymer blends: 1. Non-isothermal crystallization kinetics. Polymer. 1997;38(9):2209–14.

    Article  CAS  Google Scholar 

  22. Minkova L, Magagnini PL. Blends of poly(ethylene 2,6-naphthalate) with liquid-crystalline polymers: crystallization behavior and morphology. Polymer. 2001;42(13):5607–13.

    Article  CAS  Google Scholar 

  23. Pracella M, Dainelli D, Galli G, Chiellini E. Polymer blends based on mesomorphic components, 1. Properties of poly(tetramethylene terepthanate)/poly(decamethylene 4,4-terepthaloyldixydibenzoate) blends. Makromol Chem. 1986;187:2387–400.

    Article  CAS  Google Scholar 

  24. Carvalho B, Bretas ERS. Crystallization kinetics of a PEEK/LCP blend. J Appl Polym Sci. 1994;55(2):233–46.

    Article  Google Scholar 

  25. Torre FJ, Cortazar MM, Gomez MA, Ellis G, Marco C. Isothermal crystallization of iPP/Vectra blends by DSC and simultaneous SAXS and WAXS measurements employing synchrotron radiation. Polymer. 2003;44:5209–17.

    Article  CAS  Google Scholar 

  26. Tjong SC, Chen SX, Li RKY. Crystallization kinetics of compatibilized blends of a liquid crystalline polymer with polypropylene. J Appl Polym Sci. 1997;64:707–15.

    Article  CAS  Google Scholar 

  27. Durmus A, Yalçınyuva T. Effects of additives on non-isothermal crystallization kinetics and morphology of isotactic polypropylene. J Polym Res. 2009;16:489–98.

    Article  CAS  Google Scholar 

  28. Avrami M. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  29. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  30. Mandelkern L. Crystallization of polymers: kinetics and mechanisms. 2nd ed. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  31. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  32. Kalkar AK, Deshpande VD, Kukarni MJ. Nonisothermal crystallization kinetics of poly(phenylene sulphide) in composites with a liquid crystalline polymer. J Polym Sci B. 2010;48:1070–100.

    Article  CAS  Google Scholar 

  33. Long Y, Shanks RA, Stachurski ZH. Kinetics of polymer crystallization. Prog Polym Sci. 1995;20:651–701.

    Article  CAS  Google Scholar 

  34. Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    CAS  Google Scholar 

  36. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

  37. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-Cryst Solids. 1993;162:1–12.

    Article  CAS  Google Scholar 

  38. Peterson JD, Vyazovkin S, Wight CA. Kinetics of thermal and thermo-oxidative degradation of polystyrene, ethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    Article  CAS  Google Scholar 

  39. Saikrasun S, Saengsuwan S. Thermal decomposition kinetics of in situ reinforcing composite based on polypropylene and liquid crystalline polymer. J Mater Process Technol. 2009;209:3490–500.

    Article  CAS  Google Scholar 

  40. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal Chem. 1963;35:1464–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the Thailand Research Fund (MRG4780032). Partial financial supports from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education and Ubon Ratchathani University are also acknowledged. The SS author also grateful thanks to Prof. Sauvarop Bualek-Limcharoen for providing TLCP and giving the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayant Saengsuwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saengsuwan, S., Tongkasee, P., Sudyoadsuk, T. et al. Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim 103, 1017–1026 (2011). https://doi.org/10.1007/s10973-010-1022-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1022-3

Keywords

Navigation