Skip to main content
Log in

Low-temperature synthesis and characterization of the Mn–Zn ferrite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocrystalline ferrite with the composition: Mn0.6Zn0.4Fe2O4 was synthesized by two-stage route: the precipitation of Zn, Mn and Fe hydroxides from sulphates solution and the synthesis of a precursor by the sol–gel auto-combustion method. The ferrite powder obtained from the gel by ashing was sintered under air at a temperature of 720, 1150 and 1300 °C. The composition and morphology of the as-obtained phases were examined by ICP-AES, TG/DTA, XRD, FTIR, SEM and low-temperature nitrogen adsorption (BET). It was found that the spinel phase forms after gel combustion. The nanometric ferrite powder obtained as a result of the combustion is soft-agglomerated. The zinc content in the ferrite during ashing and auto-combustion is lower by about 21 mol% than the assumed one and the final product turn out to be Mn0.68Zn0.32Fe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dasguptaa S, Dasb J, Eckertb J, Mannaa I. Influence of environment and grain size on magnetic properties of nanocrystalline Mn–Zn ferrite. J Magn Magn Mater. 2006;306:9–15.

    Article  Google Scholar 

  2. Goldman A. Modern ferrite technology. 2nd ed. Pittsburgh: Springer; 2006.

    Google Scholar 

  3. Schaller GE. Ferrite processing & effects on material performance, Ceramic Magnetics. http://www.cmi-ferrite.com/.

  4. Waqas H, Qureshi AH. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2009;98:355–60.

    Article  CAS  Google Scholar 

  5. Waqas H, Qureshi AH. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process. J Therm Anal Calorim. 2010;100:529–35.

    Article  CAS  Google Scholar 

  6. Thakur A, Singh M. Preparation and characterization of nanosize Mn0.4Zn0.6 Fe2O4 ferrite by citrate precursor method. Ceram Int. 2003;29:505–11.

    Article  CAS  Google Scholar 

  7. Azadmanjiri J. Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J Non-Cryst Solids. 2007;353:4170–3.

    Article  CAS  Google Scholar 

  8. Yan S, Ling W, Zhou E. Rapid synthesis of Mn0.65Zn0.35Fe2O4/SiO2 homogeneous nanocomposites by modified sol–gel auto-combustion method. J Cryst Growth. 2004;273:226–33.

    Article  CAS  Google Scholar 

  9. Mangalaraja RV, Ananthakmar S, Manohar P, Gnanam FD, Awano M. Characterization of Mn0.8Zn0.2Fe2O4 synthesized by flash combustion technique. Mater Sci Eng A. 2004;367:301–5.

    Article  Google Scholar 

  10. Rath C, Sahu KK, Anand S, Date SK, Mishra NC, Das RP. Preparation and characterization of nanosize Mn–Zn ferrite. J Magn Magn Mater. 1999;202:77–84.

    Article  CAS  Google Scholar 

  11. Wang J, Zeng C, Peng Z, Chen Q. Synthesis and magnetic properties of Zn1−xMnxFe2O4 nanoparticles. Physica B. 2004;349:124–8.

    Article  CAS  Google Scholar 

  12. Arulmurugana R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B. Mn–Zn ferrite nanoparticles for ferrofluid preparation: study on thermal–magnetic properties. J Magn Magn Mater. 2006;298:83–94.

    Article  Google Scholar 

  13. Mathew DS, Juang R-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129:51–65.

    Article  CAS  Google Scholar 

  14. Giri J, Srihasha T, Asthana S, Gundu Rao TK, Nigam AK, Bahadur D. Synthesis of capped nanosized Mn1−xZnxFe2O4 (0≤x≤0.8) by microwave refluxing for bio-medical applications. J Magn Magn Mater. 2005;293:55–61.

    Article  CAS  Google Scholar 

  15. Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D. Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J Magn Magn Mater. 2007;311:208–15.

    Article  CAS  Google Scholar 

  16. Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100:1–11.

    Article  CAS  Google Scholar 

  17. Kadu AV, Jagtap SV, Chaudhari GN. Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Curr Appl Phys. 2009;9:1246–51.

    Article  Google Scholar 

  18. Klimkiewicz R, Przybylski K, Baran J, Miśta W. Mg−Zn and Mn−Zn ferrites derived from coil core materials as new precursors for catalysts of primary alcohols transformations. Ind Eng Chem Res. 2009;48:6291–5.

    Article  CAS  Google Scholar 

  19. Patil KC, Aruna ST, Ekambaram S. Combustion synthesis. Curr Opin Solid State Mater Sci. 1997;2:158–65.

    Article  CAS  Google Scholar 

  20. Mukasyan AS, Epstein P, Dinka P. Solution combustion synthesis of nanomaterials. Proc Combust Inst. 2007;3:1789–95.

    Article  Google Scholar 

  21. Winiarska K, Zabłocka-Malicka M. Prace Naukowe Wydziału Chemicznego Politechniki Wrocławskiej nr 6, Wrocław; 2006 (in Polish).

  22. Klug HP, Alexander LE. X-ray diffraction procedures for polycrystalline and amorphous materials. New York: Willey & Sons; 1974.

    Google Scholar 

  23. Chen SH, Chang SC, Lin IN, Tung MJ, Shu WB. Effect of sintering parameters on Zn loss for preparation of high permeability MnZn ferrites. IEEE Trans Magn. 1992;28:2436–8.

    Article  CAS  Google Scholar 

  24. Hu P, Yang H, Pan D, Wang H, Tian J, Zhang S, Wang X, Volynsky AA. Heat treatment effects on microstructure and magnetic properties of Mn–Zn ferrite powders. J Magn Magn Mater. 2010;322:173–7.

    Article  CAS  Google Scholar 

  25. Pouchert C. The Aldrich library of FT-IR spectra. 2nd ed. Milwaukee: Aldrich; 1997.

    Google Scholar 

  26. López FA, López-Delgado A, Martín de Vidales JL, Vila E. Synthesis of nanocrystalline zinc ferrite powders from sulphuric pickling waste water. J Alloy Compd. 1998;265:291–6.

    Article  Google Scholar 

  27. Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem Mater. 2001;13:3169–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Szczygiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczygiel, I., Winiarska, K. Low-temperature synthesis and characterization of the Mn–Zn ferrite. J Therm Anal Calorim 104, 577–583 (2011). https://doi.org/10.1007/s10973-010-0988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0988-1

Keywords

Navigation