Skip to main content

Advertisement

Log in

Thermal and spectroscopic analysis of inclusion complex of spironolactone prepared by evaporation and hot melt methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solvent and melt techniques were used to obtain molecular dispersion of the poorly soluble spironolactone (SPIR) model drug enhancing its dissolution rate. DSC study of the interaction between SPIR and hydroxypropyl-β-cyclodextrin confirmed the need for molecular dispersion if their complexation is required. Solvent-free twin-screw extrusion was suitable for forming inclusion complex significantly below the melting temperature of the SPIR. According to DSC, Raman and XRPD results fine dispersion of both components was achieved in a hydrophilic polymer. The molecules of the active ingredient are separated from each other in the polymer and the lack of the lattice energy causes faster dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.

    Article  Google Scholar 

  2. Lian Yu. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48:27–42.

    Article  Google Scholar 

  3. Craig DQM, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179:179–207.

    Article  CAS  Google Scholar 

  4. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  Google Scholar 

  5. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.

    Article  CAS  Google Scholar 

  6. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998;98:2045–76.

    Article  CAS  Google Scholar 

  7. Veiga MD, Merino M, Fernández D, Lozano R. Characterization of some cyclodextrin derivatives by thermal analysis. J Therm Anal Calorim. 2002;68:511–6.

    Article  CAS  Google Scholar 

  8. Laitinen R, Suihko E, Toukola K, Björkqvist M, Riikonen J, Lehto VP, Järvinen K, Ketolainen J. Intraorally fast-dissolving particles of a poorly soluble drug: preparation and in vitro characterization. Eur J Pharm Biopharm. 2009;71:271–81.

    Article  CAS  Google Scholar 

  9. Fukuda M, Miller DA, Peppas NiA, McGinity JW. Influence of sulfobutyl ether-cyclodextrin (Captisol®) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion. Int J Pharm. 2008;350:88–196.

    Article  Google Scholar 

  10. Six K, Leuner Ch, Dressman J, Verreck G, Peeters J, Blaton N, Augustijns P, Kinget R, Van den Mooter G. Thermal properties of hot-stage extrudates of itraconazole and EUDRAGIT E100. J Therm Anal Calorim. 2002;68:591–601.

    Article  CAS  Google Scholar 

  11. Bartsch SE, Griesser UJ. Physicochemical properties of the binary system glibenclamide and polyethylene glycol 4000. J Therm Anal Calorim. 2004;77:555–69.

    Article  CAS  Google Scholar 

  12. Berbenni V, Marini A, Bruni G, Maggioni A, Riccardi R, Orlandi A. Physico-chemical characterisation of different solid forms of spironolactone. Thermochim Acta. 1999;340–341:117–29.

    Article  Google Scholar 

  13. Marini A, Berbenni V, Bruni G, Maggioni A, Orlandi A, Villa M. Thermodynamics of complex melting process: the case of spironolactone. Thermochim Acta. 2001;374:171–84.

    Article  CAS  Google Scholar 

  14. Giordano F, Novak C, Moyano JR. Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta. 2001;380:123–51.

    Article  CAS  Google Scholar 

  15. de Araujo DR, Tsuneda SS, Cereda CMS, Del GF Carvalho F, Preté PSC, Fernandes SA, Yokaichiya F, Franco MKKD, Mazzaro I, Fraceto LF, de FA Braga A, de Paula E (2008) Development and pharmacological evaluation of ropivacaine-2-hydroxypropyl-β-cyclodextrin inclusion complex. Eur J Pharm Sci 33:60–71.

  16. Aki H, Niiya T, Iwase Y, Yamamoto M. Calorimetry to evaluate inclusion mechanism in the complexation between 2-hydroxypropyl-β-cyclodextrin and barbiturates in aqueous solution. J Therm Anal Calorim. 2001;64:713–9.

    Article  CAS  Google Scholar 

  17. Brown ME, Glass BD, Worthington MS. Binary systems of nifedipine and various cyclodextrins in the solid state. J Therm Anal Calorim. 2002;68:631–46.

    Article  CAS  Google Scholar 

  18. Soliman OAE, Kimura K, Hirayama F, Uekama K, El-Sabbagh HM, Abd El-Gawad Abd El-Gawad H, Hashim FM. Amorphous spironolactone-hydroxypropylated cyclodextrin complexes with superior dissolution and oral bioavailability. Int J Pharm. 1997;149:73–83.

    Article  CAS  Google Scholar 

  19. Rajabi O, Tayyari F, Salari R, Tayyari SF. Study of interaction of spironolactone with hydroxypropyl-b-cyclodextrin in aqueous solution and in solid state. J Mol Struct. 2008;878:78–83.

    Article  CAS  Google Scholar 

  20. Morin N, Chilouet A, Millet J, Rouland J-C. Bifonazole-β-cyclodextrin inclusion complexes. J Therm Anal Calorim. 2000;62:187–201.

    Article  CAS  Google Scholar 

  21. Caira MR, Dodds DR, Nassimbeni LR. Polymorphism and cyclodextrin inclusion of salbutamol laurate. J Therm Anal Calorim. 2002;68:647–55.

    Article  CAS  Google Scholar 

  22. Beatrice Nicolaï, Espeau p, Céolin R, Perrin M-A, Zaskel L, Giovannini J, Leveiller F. Polymorph formation from solvate desolvation. J Therm Anal Calorim. 2007;90(2):337–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Patyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patyi, G., Bódis, A., Antal, I. et al. Thermal and spectroscopic analysis of inclusion complex of spironolactone prepared by evaporation and hot melt methods. J Therm Anal Calorim 102, 349–355 (2010). https://doi.org/10.1007/s10973-010-0936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0936-0

Keywords

Navigation