Skip to main content
Log in

A thermogravimetric method for assessing the substantivity of polymer films on dentally relevant substrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermogravimetric (TG) method is described for evaluating the substantivity of multi-functional polymeric materials that may be used as protective coatings for teeth. Applied to poly(butyl methacrylate) and poly(octadecyl methacrylate) film structures deposited onto model tooth surfaces from aqueous latex formulations, the method shows that while the latter polymer exhibits little substantivity, the former may be a suitable candidate material for dental-care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hannig C, Hamkens A, Becker K, Attin R, Attin T. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro. Arch Oral Biol. 2005;50:541–52.

    Article  CAS  Google Scholar 

  2. Meurman JH, Rytomaa I, Kari K, Laakso T, Murtomaa H. Salivary pH and glucose after consuming various beverages, including sugar-containing drinks. Caries Res. 1987;21:353–9.

    Article  CAS  Google Scholar 

  3. Walters PA. Dentine hypersensitivity: a review. J Contemp Dent Pract. 2005;6(2):107–17.

    Google Scholar 

  4. Addy M. Dentine hypersensitivity: definition, prevalence, distribution and aetiology. Tooth wear and sensitivity. In: Addy M, Embery G, Edgar WM, Orchardson R, editors. Clinical advances in restorative dentistry. London: Martin Dunitz; 2000. p. 239–48.

    Google Scholar 

  5. Churchley D, Rees GD, Barbu E, Nevell TG, Tsibouklis J. Fluoropolymers as low-surface-energy tooth coatings for oral care. Int J Pharm. 2008;352(1–2):44–9.

    Article  CAS  Google Scholar 

  6. Churchley D, Rees GD, Barbu E, Nevell TG, Tsibouklis J. Synthesis and characterization of low surface energy fluoropolymers as potential barrier coatings in oral care. J Biomed Mater Res A. 2008;84A:994–1005.

    Article  CAS  Google Scholar 

  7. Derjaguin DV, Landau L. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochem URSS. 1941;14:633–62.

    Google Scholar 

  8. Verwey EJW, Overbeek JTG. Stability of colloids. Theory of the stability of lyophobic colloids. Amsterdam: Elsevier; 1948.

    Google Scholar 

  9. Tunney MM, Gorman SP, Patrick S. Infection associated with medical devices. Rev Med Microbiol. 1996;7(4):195–206.

    Google Scholar 

  10. Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R, Smith JR, Green KL, Nevell TG. Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials. 1999;20(13):1229–35.

    Article  CAS  Google Scholar 

  11. Tsibouklis J, Stone M, Thorpe AA, Graham P, Nevell TG, Ewen RJ. Surface energy characteristics of polymer film structures: a further insight into the molecular design requirements. Langmuir. 1999;15:7076–9.

    Article  CAS  Google Scholar 

  12. Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Mater Res. 1998;13(1):94–117.

    Article  CAS  Google Scholar 

  13. Smith SD, Long TE, McGrath JE. Thermogravimetric analysis of poly(alkyl methacrylates) and poly(methylmethacrylate-g-dimethyl siloxane) graft copolymers. J Polym Sci: A Polym Chem. 1994;32(9):1747–53.

    Article  CAS  Google Scholar 

  14. Bertini F, Audisio G, Zuev VV. Investigation on the thermal degradation of poly-n-alkyl acrylates and poly-n-alkyl methacrylates (C1–C12). Polym Degrad Stab. 2005;89(2):233–9.

    Article  CAS  Google Scholar 

  15. Awad MK. Effect of alkyl substituents on the thermal degradation of poly(alkyl methacrylate): a molecular orbital study using the ASED-MO method. Polym Degrad Stab. 1995;49(3):339–46.

    Article  CAS  Google Scholar 

  16. Czech Z, Pelech R. Thermal degradation of poly(alkyl methacrylates). J Therm Anal Calorim. 2010;100(2):641–4.

    Article  CAS  Google Scholar 

  17. Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24:693–8.

    Article  CAS  Google Scholar 

  18. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88(1):237–43.

    Article  CAS  Google Scholar 

  19. Dawes C. Clearance of substances from the oral cavity—implications for oral health. In: Edgar WM, O’Mullane DM, editors. Saliva and oral health. 2nd ed. London: British Dental Journal; 1996. p. 67–79.

    Google Scholar 

  20. Patel MM, Smart JD, Nevell TG, Ewen RJ, Eaton PJ, Tsibouklis J. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion. Biomacromolecules. 2003;4(5):1184–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Tsibouklis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, B.V., Nevell, T.G., Barbu, E. et al. A thermogravimetric method for assessing the substantivity of polymer films on dentally relevant substrates. J Therm Anal Calorim 102, 121–126 (2010). https://doi.org/10.1007/s10973-010-0910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0910-x

Keywords

Navigation