Skip to main content
Log in

Thermal analysis of nanostructured calcite crystals covered with fatty acids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The way of precipitation process conducting is crucial for the final product properties and its further applications. In present experiments, the CaCO3 powders, produced by controlled fast precipitation trough gaseous CO2 absorption in Ca(OH)2 slurry, have been covered by two fatty acids: dodecanoic (lauric) acid and tetradecanoic (myristic) acid. This multiphase reaction was conducted in a new rotating disc reactor unit which enables to control inter- and intra-face mass and energy transfer as well as the macro- and micromixing effects in the reacting system. The obtained nanopowders have been observed by the use of the scanning electron microscope. The X-ray diffraction technique as well as the dynamic light scattering (DLS) and the thermogravimetric method (TG) were further used for its deep analyses. The experimental data have allowed for distinction between different fatty acid molecules species present on calcite surface (chemisorbed ones, inter-located between adsorbed to surface, formed mono- and bilayers and the soap) or free fatty acids molecules if presented in the sample. The amount of fatty acid species forming different layers on calcite as well as the size and distribution of fatty acid coated CaCO3 powders have been also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spanos N, Koutsoukos PG. Kinetics of precipitation of calcium carbonate in alkaline pH at constant supersaturation. Spontaneous and seeded growth. J Phys Chem B. 1998;102:6679–84.

    Article  CAS  Google Scholar 

  2. Rigopoulos S, Jones A. Modeling of semibatch agglomerative gas–liquid precipitation of CaCO3 in a bubble column reactor. Ind Eng Chem Res. 2003;42:6567–75.

    Article  CAS  Google Scholar 

  3. Schlomach J, Quarch K, Kind M. Investigation of precipitation of calcium carbonate at high supersaturations. Chem Eng Technol. 2006;29:215–20.

    Article  Google Scholar 

  4. Sohnel O, Mullin JW. Precipitation of calcium carbonate. J Cryst Growth. 1982;60:239–50.

    Article  CAS  Google Scholar 

  5. Reddy MM, Nancollas GH. The crystallization of calcium carbonate: IV. The effect of magnesium, strontium and sulfate ions. J Cryst Growth. 1976;35:33–8.

    Article  CAS  Google Scholar 

  6. Kazmierczak TF, Tomson M, Nancollas GH. Crystal growth of calcium carbonate: a controlled composition kinetic study. J Phys Chem. 1982;86:103–5.

    Article  CAS  Google Scholar 

  7. Jung T, Kim WS, Choi CK. Effect of monovalent salts on morphology of calcium carbonate crystallized in Couette–Taylor reactor. Cryst Res Technol. 2005;40:586–92.

    Article  CAS  Google Scholar 

  8. Dindore VY, Brilman DWF, Versteeg GF. Hollow fiber membrane contactor as a gas–liquid model contactor. Chem Eng Sci. 2005;60:467–79.

    Article  CAS  Google Scholar 

  9. Kitano Y, Park K, Hood DW. Pure aragonite synthesis. J Geophys Res. 1962;67:4873–4.

    Article  CAS  Google Scholar 

  10. Chen JF, Wang YH, Guo F, Wang XM, Zheng Ch. Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind Eng Chem Res. 2000;39:948–54.

    Article  CAS  Google Scholar 

  11. Cafiero LM, Baffi G, Chianese A, Jachuck RJJ. Process intensification: precipitation of barium sulfate using a spinning disk reactor. Ind Eng Chem Res. 2002;41:5240–6.

    Article  CAS  Google Scholar 

  12. Feng B, Yonga AK, An H. Effect of various factors on the particle size of calcium carbonate formed in a precipitation process. Mater Sci Eng A. 2007;445–446:170–9.

    Google Scholar 

  13. Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J. Rhombohedral calcite precipitation from CO2–H2O–Ca(OH)2 slurry under supercritical and gas CO2 media. J Cryst Growth. 2007;308:228–36.

    Article  CAS  Google Scholar 

  14. Judat B, Kind M. Morphology and internal structure of barium sulfate—derivation of a new growth mechanism. J Colloid Interface Sci. 2004;269:341–53.

    Article  CAS  Google Scholar 

  15. Chakraborty D, Bhatia SK. Formation and aggregation of polymorphs in continuous precipitation. 2. Kinetics of CaCO3 precipitation. Ind Eng Chem Res. 1996;35:1995–2006.

    Article  CAS  Google Scholar 

  16. Cheng B, Lei M, Yu JG, Zhao X. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Meter Lett. 2004;58:1565–70.

    Article  CAS  Google Scholar 

  17. Colfen H, Antonietti M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed. 2005;44:5576–91.

    Article  Google Scholar 

  18. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science. 2000;289:751–4.

    Article  CAS  Google Scholar 

  19. Wang T, Antonietti M, Colfen H. Calcite mesocrystals: “morphing” crystals by polyelectrolyte. Chem Eur J. 2006;12:5722–30.

    Article  CAS  Google Scholar 

  20. Xu AW, Yu Q, Dong WF, Antonietti M, Colfen H. Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid. Adv Mater. 2005;17:2217–21.

    Article  CAS  Google Scholar 

  21. Buijnsters PJJA, Donners JJJM, Hill SJ, Heywood BR, Nolte RJM, Zwanenburg B, Sommerdijk NAJM. Oriented crystallization of calcium carbonate under self-organized monolayers of amide-containing phospholipids. Langmuir. 2001;17:3623–8.

    Article  CAS  Google Scholar 

  22. Damle C, Kumar A, Sainkar SR, Bhagawat M, Sastry M. Growth of calcium carbonate crystals within fatty acid bilayer stacks. Langmuir. 2002;18:6075–80.

    Article  CAS  Google Scholar 

  23. Kędra-Królik K, Gierycz P. Precipitation of nanostructured calcite in a controlled multiphase process. J Cryst Growth. 2009;311:3674–81.

    Article  Google Scholar 

  24. Kędra-Królik K, Gierycz P, Bucki J. Controlled precipitation of CaCO3 sub-micro crystals of well-defined structure in a multiphase system. Arch Metall Mater. 2006;51:635–9.

    Google Scholar 

  25. Kędra-Królik K, Gierycz P. Obtaining calcium carbonate in a multiphase system by the use of new rotating disc precipitation reactor. J Therm Anal Calorim. 2006;83:579–82.

    Article  Google Scholar 

  26. Klug HP, Alexander LE. X-Ray diffraction procedures. New York: Wiley; 1974.

    Google Scholar 

  27. Mills P, Snabre P. Settling of a suspension of hard spheres. Europhys Lett. 1994;25:651–6.

    Article  Google Scholar 

  28. Dirksen JA, Ring TA. Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chem Eng Sci. 1991;46:2389–427.

    Article  CAS  Google Scholar 

  29. Chen PC, Tai CY, Lee KC. Morphology and growth rate of calcium carbonate crystals in a gas–liquid–solid reactive crystallizer. Chem Eng Sci. 1997;52:4171–7.

    Article  CAS  Google Scholar 

  30. Han YS, Hadiko G, Fuji M, Takahashi M. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method. J Cryst Growth. 2007;276:541–8.

    Article  Google Scholar 

  31. Rey FJ, Chamorro O, Gil FJM, Gil JM. Characterization of fatty acid methyl esters by thermal analysis. J Therm Anal Calorim. 1993;40:463–73.

    Article  CAS  Google Scholar 

  32. Osman MA, Suter UW. Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer. Chem Mater. 2002;14:4408–15.

    Article  CAS  Google Scholar 

  33. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–53.

    Article  CAS  Google Scholar 

  34. Kok MV. Recent developments in the application of thermal analysis techniques in fossil fuels. J Therm Anal Calorim. 2008;91:763–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out within the Ministry of Science and Higher Education Research Project No. 1206/GDR/2007/03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Gierycz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kędra-Królik, K., Wszelaka-Rylik, M. & Gierycz, P. Thermal analysis of nanostructured calcite crystals covered with fatty acids. J Therm Anal Calorim 101, 533–540 (2010). https://doi.org/10.1007/s10973-010-0853-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0853-2

Keywords

Navigation