Skip to main content
Log in

Thermal, structural and morphological assessment of PVP/HA composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Composites of poly(vinyl pyrrolidone)/hydroxyapatite (PVP/HA), at variable proportions (100/0; 80/20; 50/50; 20/80 wt%) were prepared and characterized by Fourier transformer-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and thermogravimetry/differential thermogravimetry (TG/DTG). PVP carbonyl stretching was slightly shifted to lower frequency in composites indicating the formation of hydrogen bonding with HA hydroxyl groups. At the first cycle of heating, the calorimetric curves revealed a broad peak the intensity of which was reduced insofar as the amount of PVP decreased in the composites. This peak was attributed to the PVP enthalpy relaxation. According to the TG/DTG curves, PVP degraded into two steps sharply perceivable in the composites. The first decay was ascribed to the release of the pyrrolidone pendant groups and the following one concerned the burning of the hydrocarbon chains. The HA molecules seem to exert a catalytic action on the PVP degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verwilghen C, Rio S, Nzihou A, Gauthier D, Flamant G, Sharrock PJ. Preparation of high specific surface area hydroxyapatite for environmental applications. J Mater Sci. 2007;42:6062–6.

    Article  CAS  Google Scholar 

  2. Santos ML, Florentino AO, Saeki MJ, Aparecida AH, Lia Fook MV, Guastaldi AC. Síntese de hidroxiapatita pelo método sol-gel utilizando precursores alternativos: nitrato de cálcio e ácido fósforico. Eclética Química. 2005;30:29–35.

    Article  CAS  Google Scholar 

  3. Ignjatovic N, Tomic S, Dakic M, Miljkovic M, Plavsic M, Uskokovic D. Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials. 1999;20:809–16.

    Article  CAS  Google Scholar 

  4. Qiu C, Xiao X, Liu R. Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol. Ceram Int. 2008;34:1747–51.

    Article  CAS  Google Scholar 

  5. Morales JG, Burgues JT, Boix T, Fraile J, Clemente RR. Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst Res Technol. 2001;36:15–26.

    Article  Google Scholar 

  6. Maachou H, Bal KE, Bal Y, Chagnes A, Cote G, Alliouche D. Characterization and in vitro bioactivity of chitosan/hydroxyapatite composite membrane prepared by freeze-gelation method. Trends Biomater Artif Organs. 2008;22:15–24.

    Google Scholar 

  7. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials. 2003;24:4609–20.

    Article  CAS  Google Scholar 

  8. Landi E, Sprio S, Sandri M, Celotti G, Tamperie A. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 2008;4:656–63.

    Article  CAS  Google Scholar 

  9. Dumelie N, Benhayounea H, Richard D, Laurent-Maquin D, Balossier G. In vitro precipitation of electrodeposited calcium-deficient hydroxyapatite coatings on Ti6Al4V substrate. Mater Charact. 2008;59:129–39.

    Article  CAS  Google Scholar 

  10. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials. 2001;22:1739–47.

    Article  CAS  Google Scholar 

  11. Tang XL, Xiao XF, Liu RF. Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method. Mater Lett. 2005;59:3841–6.

    Article  CAS  Google Scholar 

  12. Albano C, Cataño L, Figuera L, Perera R, Karam A, González G, Noris K. Evaluation of a composite based on high-density polyethylene filled with surface-treated hydroxyapatite. Polym Bull. 2009;62:45–55.

    Article  CAS  Google Scholar 

  13. Seong-Hoon K, Byoung-Ki L, Fangfang S, Kwangnak K, Su-Chak R, Hong-Sung K, Jaebeom L. Preparation of high flexible composite film of hydroxyapatite and chitosan. Polym Bull. 2009;62:111–8.

    Article  Google Scholar 

  14. Ignjatovic N, Savic V, Najman S, Plavsic M, Uskokovic D. A study of HAp/PLLA composite as a substitute for bone powder using FT-IR spectroscopy. Biomaterials. 2001;22:571–5.

    Article  CAS  Google Scholar 

  15. Khan YM, Katti DS, Laurencin CT. Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation. J Biomed Mater Res. 2004;69:728–37.

    Article  Google Scholar 

  16. Lee K-C, Her J-H, Kwon S-K. Red clay composites reinforced with polymeric binders. Constr Build Mater. 2008;22:2292–8.

    Article  Google Scholar 

  17. Tae-Hyun K, Dae-Wook K, Jong-Min L, Yong-Geun L, Seong-Geun O. Preparation of gold-silica heterogeneous nanocomposite particles by alcohol-reduction method. Mater Res Bull. 2008;43:1126–34.

    Article  Google Scholar 

  18. Mandal U, Gowda V, Ghosh A, Selvan S, Solomon S, Pal TK. Formulation and optimization of sustained release matrix tablet of metformin HCl 500 mg using response surface methodology. Yakugaku Zasshi. 2007;127:1281–90.

    Article  CAS  Google Scholar 

  19. Kiekens F, Zelko R, Remon JP. Effect of the storage conditions on the tensile strength of tablets in relation to the enthalpy relaxation of the binder. Pharm Res. 2000;17:490–3.

    Article  CAS  Google Scholar 

  20. Gohel MC, Jogani PD. Exploration of melt granulation technique for the development of coprocessed directly compressible adjuvant containing lactose and microcrystalline cellulose. Pharm Dev Technol. 2003;8:175–85.

    Article  CAS  Google Scholar 

  21. Kiekens F, Zelko R, Remon JP. Influence of drying temperature and granulation liquid viscosity on the inter- and intragranular drug migration in tray-dried granules and compacts. Pharm Dev Technol. 2000;5:131–7.

    Article  CAS  Google Scholar 

  22. Jevtic M, Radulovic A, Ignjatovic N, Mitric M, Uskokovic D. Controlled assembly of poly(d, l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres under ultrasonic irradiation. Acta Biomater. 2009;5:208–18.

    Article  CAS  Google Scholar 

  23. Hummel DO. Atlas of polymer and plastics analysis V.2B/I. Munich, Germany: Carl Hansen; 1988.

    Google Scholar 

  24. Silva M, Silva FCA, Fogo FC, Pineda EAG, Hechenleitner AAW. Thermal and FTIR study of poly(vinylpyrrolidone)/lignin blends. J Therm Anal Calorim. 2005;79:367–70.

    Article  CAS  Google Scholar 

  25. Siddharthan A, Seshadri SK, Sampath SK, Kumar TS. Synthesis of calcium deficient hydroxyapatite nanoparticles by microwave irradiation. Trends Biomater Artif Organs. 2005;18:110–3.

    Google Scholar 

  26. Cassu SN, Felisberti MI. Poly(vinyl alcohol) and poly(vinylpyrrolidone) blends: 2. Study of relaxations by dynamic mechanical analysis. Polymer. 1999;40:4845–51.

    Article  CAS  Google Scholar 

  27. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN. Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinylpyrrolidone), chitosan and poly(vinyl alcohol). J Appl Polym Sci. 2008;110:1739–49.

    Article  CAS  Google Scholar 

  28. Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(ε-caprolactone) nanocomposites. Comp Sci Technol. 2007;67:2165–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Mendes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendes, L.C., Rodrigues, R.C. & Silva, E.P. Thermal, structural and morphological assessment of PVP/HA composites. J Therm Anal Calorim 101, 899–905 (2010). https://doi.org/10.1007/s10973-010-0835-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0835-4

Keywords

Navigation