Skip to main content
Log in

Transitions/relaxations in polyester adhesive/PET system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The correlations between the transitions and the dielectric relaxation processes of the oriented poly(ethylene terephthalate) (PET) pre-impregnated of the polyester thermoplastic adhesive have been investigated by differential scanning calorimetry (DSC) and dynamic dielectric spectroscopy (DDS). The thermoplastic polyester adhesive and the oriented PET films have been studied as reference samples. This study evidences that the adhesive chain segments is responsible for the physical structure evolution in the PET-oriented film. The transitions and dielectric relaxation modes’ evolutions in the glass transition region appear characteristic of the interphase between adhesive and PET film, which is discussed in terms of molecular mobility. The storage at room temperature of the adhesive tape involves the heterogeneity of the physical structure, characterized by glass transition dissociation. Thus, the correlation between the transitions and the dielectric relaxation processes evidences a segregation of the amorphous phases. Therefore, the physical structure and the properties of the material have been linked to the chemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Voyutskii SS, Vakula VL. The role of diffusion phenomena in polymer-to-polymer adhesion. J Appl Polym Sci. 1963;7:475–91.

    Article  CAS  Google Scholar 

  2. Boiko YM, Prud’Homme RE. Surface mobility and diffusion at interfaces of polystyrene in the vicinity of the glass transition. J Polym Sci B Polym Phys. 1998;36:567–72.

    Article  CAS  Google Scholar 

  3. Baldan A. Adhesively-bonded joints and repairs in metallic alloys, polymers and materials: adhesives, adhesion theories and surface pretreatment. J Mater Sci. 2004;39:1–49.

    Article  CAS  Google Scholar 

  4. Thomason JL. Investigation of composite interphase using dynamic mechanical analysis: artifacts and reality. Polym Comp. 1990;11:105–13.

    Article  CAS  Google Scholar 

  5. Garton A, Daly JH. Characterization of the aramid: epoxy and carbon: epoxy interphases. Polym Comp. 1985;6:195–200.

    Article  CAS  Google Scholar 

  6. Schmidt-Rohr K, Hu W, Zumbulyadis N. Elucidation of the chain conformation in a glassy polyester, PET, by two-dimensional NMR. Science. 1998;280:714–7.

    Article  CAS  Google Scholar 

  7. Mathot BF. Calorimetry and thermal analysis of polymers. Munich: Hanser Publishers; 1994.

    Google Scholar 

  8. Havriliak S, Negami S. A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci C Polym Symp. 1966;14:99–117.

    Article  Google Scholar 

  9. Vallat MF, Plazek DJ. Effect of thermally treatment on biaxially oriented poly(ethylene terephthalate). II. The anisotropic glass temperature. J Polym Sci B Polym Phys. 1988;26:545–54.

    Article  CAS  Google Scholar 

  10. Bernès A, Chatain D, Lacabanne C. Differential scanning calorimetry and thermostimulated current spectroscopy for the study of molecular orientation in polymers. Thermochim Acta. 1992;204:69–77.

    Article  Google Scholar 

  11. Bhoje Gowd E, Ramesh C, Byrne MS, Sanjeeva Murthy N, Radhakrishnan J. Effect of molecular orientation on the crystallisation and melting behavior in poly(ethylene terephthalate). Polymer. 2004;45:6707–12.

    Article  Google Scholar 

  12. Ménégotto J, Demont P, Bernès A, Lacabanne C. Combined dielectric spectroscopy and thermally stimulated currents studies of the secondary relaxation process in amorphous poly(ethylene terephthalate). J Polym Sci B Polym Phys. 1999;37:3494–503.

    Article  Google Scholar 

  13. Ménégotto J, Demont P, Lacabanne C. Study of dielectric relaxation processes of PET by dynamic dielectric and thermostimulated spectroscopies. In: Proceedings of the 10th International Symposium on Electrets (ISE 10). vol. 10; 1999. p. 289–92.

  14. Bartos J, Müller J, Wendorff JH. Physical ageing of isotropic and anisotropic polycarbonate. Polymer. 1990;31:1678–84.

    Article  CAS  Google Scholar 

  15. Dargent E, Santais JJ, Saiter JM, Bayard J, Grenet J. Dielectric relaxations in drawn semi-crystalline poly(ethylene terephthalate). J Non-Cryst Solids. 1994;172–174:1062–5.

    Article  Google Scholar 

  16. Song HH, Roe RJ. Structural change accompanying volume change in amorphous polystyrene as studied by small and intermediate angle X-ray scattering. Macromolecules. 1987;20:2723–32.

    Article  CAS  Google Scholar 

  17. Vigier G, Tatibouet J, Benatmane A, Vassoille R. Amorphous phase evolution during crystallization of poly(ethylene-terephthalate). Colloid Polym Sci. 1992;270:1182–7.

    Article  CAS  Google Scholar 

  18. Kressmann R, Sessler GM, Günther P. Space-charge electrets. IEEE Trans Dielectr Electr Insul. 1996;3:607–23.

    Article  CAS  Google Scholar 

  19. Hristov HA, Schultz JM. Thermal response and structure of PET fibers. J Polym Sci B Polym Phys. 1990;28:1647–63.

    Article  CAS  Google Scholar 

  20. Murthy NS, Correale ST, Minor H. Structure of the amorphous phase in crystallizable polymers: poly(ethylene terephthalate). Macromolecules. 1991;24:1185–9.

    Article  CAS  Google Scholar 

  21. Menczel J, Wunderlich B. Glass transition of semicrystalline macromolecules. Polymer. 1986;27:255–6.

    CAS  Google Scholar 

  22. Kattan M, Dargent E, Grenet J. Relaxations in amorphous and semi-crystalline polyesters. J Therm Anal Calorim. 2004;76:379–94.

    Article  CAS  Google Scholar 

  23. Menczel JD, Jaffe M. How did we find the rigid amorphous phase? J Therm Anal Calorim. 2007;89:357–62.

    Article  CAS  Google Scholar 

  24. Slobodian P. Rigid amorphous fraction in poly(ethylene terephthalate) determined by dilatometry. J Therm Anal Calorim. 2008;94:545–51.

    Article  CAS  Google Scholar 

  25. Chen H, Cebe P. Vitrification and devitrification of rigid amorphous fraction of PET during quasi-isothermal cooling and heating. Macromolecules. 2009;42:288–92.

    Article  CAS  Google Scholar 

  26. Xenopoulos A, Wunderlich B. Thermodynamic properties of liquid and semicrystalline linear aliphatic polyamides. J Polym Sci B Polym Phys. 1990;28:2271–90.

    Article  CAS  Google Scholar 

  27. Van Krevelen DW. Properties of polymers. Amsterdam: Elsevier; 1972.

    Google Scholar 

  28. Boiko YM, Prud’Homme RE. Strength development at the interface of amorphous polymers and their miscible blends, below the glass transition temperature. Macromolecules. 1998;31:6620–6.

    Article  CAS  Google Scholar 

  29. Boiko YM, Guérin G, Marikhin VA, Prud’Homme RE. Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymer. 2001;42:8695–702.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Bernès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carsalade, E., Bernès, A., Lacabanne, C. et al. Transitions/relaxations in polyester adhesive/PET system. J Therm Anal Calorim 101, 849–857 (2010). https://doi.org/10.1007/s10973-010-0834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0834-5

Keywords

Navigation