Skip to main content
Log in

Inter-monomer cross-linking affects the thermal transitions in F-actin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chemical cross-links which covalently connected the Cys-374 and Glu-41 residues of adjacent monomers in the same strand of F-actin were used to follow the consequences of the modification for the motional and structural properties of the actin filaments. DSC measurements reported that the inter-monomer cross-links shifted the thermal transition temperature and affected strongly the cooperativity of the transition in comparison with uncross-linked F-actin. Addition of HMM to F-actin induced significant decrease of the transition temperature to lower value from 69.4 to 67. 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sheterline P, Clayton J, Sparrow JC. Actin. New York: Oxford University Press; 1998.

    Google Scholar 

  2. Pollard TD, Blanchoin L, Mullins RD. Biophysics of actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–76.

    Article  CAS  Google Scholar 

  3. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligen RA. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993;261:58–65.

    Article  CAS  Google Scholar 

  4. Geeves MA. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem J. 1991;274:1–14.

    CAS  Google Scholar 

  5. Elzinga M, Phelan JJ. F-actin is intermolecularly crosslinked by N,N'-p-phenylenedimaleimide through lysine-191 and cysteine-374. Proc Natl Acad Sci USA. 1984;81:6599–602.

    Article  CAS  Google Scholar 

  6. Hegyi G, Michel H, Shabanowitz J, Hunt DF, Chatterjie N, Healy-Louie G, Elzinga M. Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine. Protein Sci. 1992;1:132–44.

    Article  CAS  Google Scholar 

  7. Hegyi G, Mák M, Kim E, Elzinga M, Muhlrad A, Reisler E. Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine. Biochemistry. 1998;37:17784–92.

    Article  CAS  Google Scholar 

  8. Fajer P, Marsh D. Microwave and modulation field inhomogenities and effect of cavity Q in saturation transfer EPR spectra. Dependence of sample size. J Mag Res. 1982;49:212–24.

    CAS  Google Scholar 

  9. Prochniewicz E, Yanagida T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J Mol Biol. 1990;216:761–72.

    Article  CAS  Google Scholar 

  10. Kim E, Bobkova E, Miller CJ, Orlova A, Hegyi G, Egelman EH, Muhlrad A, Reisler AE. Intrastrand cross-linked actin between Gln-41 and Cys-374. III. Inhibition of motion and force generation with myosin. Biochemistry 1998;37:17801–9.

    Google Scholar 

  11. Hegyi G, Belagyi J. Intermonomer cross-linking of F-actin alters the dynamics of its interaction with H-meromyosin in the weak-binding state. FEBS J. 2006;273:1896–905.

    Article  CAS  Google Scholar 

  12. Spudich JA, Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971;246:4866–71.

    CAS  Google Scholar 

  13. Margossian SS, Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85:55–71.

    Article  CAS  Google Scholar 

  14. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58:110–20.

    Article  CAS  Google Scholar 

  15. Sanchez-Ruiz JM. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J. 1992;61:921–35.

    Article  CAS  Google Scholar 

  16. Sanchez-Ruiz JM, Lopez-Lacomba JM, Cortijo M, Mateo PL. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988;27:1648–52.

    Article  CAS  Google Scholar 

  17. Conjero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM. Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry. 1991;30:2067–72.

    Article  Google Scholar 

  18. Thorolfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martinez A. L-phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry. 2002;41:7573–85.

    Article  CAS  Google Scholar 

  19. Vogl T, Jatzke C, Hinz H-J, Benz J, Huber R. Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry. 1997;36:1657–68.

    Article  CAS  Google Scholar 

  20. Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM. Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins Struct Funct Genet. 2000;40:58–70.

    Article  CAS  Google Scholar 

  21. Le Bihan T, Gicquaud C. Kinetic study of the thermal denaturation of G actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem Biophys Res Commun. 1993;194:1065–73.

    Article  CAS  Google Scholar 

  22. Naber N, Lorenz M, Cook R. The orientation of spin-probes attached to Cys374 on actin in oriented gels. J Mol Biol. 1994;236:703–9.

    Article  CAS  Google Scholar 

  23. Ostap EM, Yanagida T, Thomas DD. Orientational distribution of spin-labeled actin oriented by flow. Biophys J. 1992;63:966–75 .

    Article  CAS  Google Scholar 

  24. Goodno CC, Haris TA, Swenson CA. Thermal transitions of myosin and its helical fragments. Regions of structural instability in the myosin molecule. Biochemistry. 1976;15:5157–60.

    Article  CAS  Google Scholar 

  25. Kim E, Bobkova E, Hegyi G, Muhlrad A, Reisler E. Actin cross-linking and inhibition of the actomyosin motor. Biochemistry. 2002;41:86–93.

    Article  CAS  Google Scholar 

  26. Prochniewitz E, Walseth TF, Thomas DD. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads. Biochemistry. 2004;43:10642–52.

    Article  CAS  Google Scholar 

  27. Lőrinczy D, Vértes Zs, Könczöl F, Belagyi J. Thermal transitions of actin. J Therm Anal Calorim. 2009;95:713–19.

    Article  CAS  Google Scholar 

  28. Dudás R, Kupi T, Vig A, Orbán J, Lőrinczy D. The effect of phalloidin on the skeletal muscle ADP-actin filaments. J Therm Anal Calorim. 2009;95:709–12.

    Article  CAS  Google Scholar 

  29. Vig A, Dudás R, Kupi T, Orbán J, Hild G, Lőrinczy D, Nyitrai M. The effect of phalloidin on filaments polymerized from heart muscle ADP-actin monomers. J Therm Anal Calorim. 2009;95:721–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SETARAM Micro DSC-II used in the experiments were purchased with fund provided by the National Research Foundation Grant CO-272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lőrinczy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Könczöl, F., Lőrinczy, D., Vértes, Z. et al. Inter-monomer cross-linking affects the thermal transitions in F-actin. J Therm Anal Calorim 101, 549–553 (2010). https://doi.org/10.1007/s10973-010-0833-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0833-6

Keywords

Navigation