Skip to main content
Log in

Starch plasticized with glycerol from biodiesel and polypropylene blends

Mechanical and thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Plastics have been used in short-life products, which have presented harmful consequences for the nature, due to the low degradation rate reached by the most common polyolefins, such as the polypropylene. By this way, the incorporation of pro-oxidants has been shown nice results to the bio-assimilation of the common polymers. The aim of this study is to evaluate the mechanical and thermal properties of pure iPP, plasticized starch (TPS) with biodiesel glycerol (TPSBio) or commercial glycerol (TPSCom), and their blends (iPP/TPSPlas). TPS was plasticized in proportions of 80/20 (wt starch/wt glycerin). Blends of iPP/TPSPlas were obtained by extrusion in the following composition rates: 95/5, 90/10, 80/20, and 70/30 of modified PP/TPSPlas. Mechanical properties, calorimetric analysis, and thermogravimetric data were obtained, and biodegradation under simulated soil was performed. It can be verified that there were no meaningful variation induced by the incorporation of TPSPlas on the melting temperature on the blends, when compared to pure iPP. The addition of TPSPlas caused an increasing on the crystallinity of iPP, mainly for the compositions 90/10 and 80/20 of iPP/TPSPlas, probably due a morphological alteration such as crosslinking, which may have modified the molecular arrangement of the iPP macromolecules by the presence of glycerol, which was also indicated by mechanical evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albertsson A-C. Biodegradation of polymers in historical perspective versus modern polymer chemistry. In: Hamid SH, editor. Handbook of polymer degradation. 2nd ed. New York: CRC Press; 2000. p. 421–39.

    Google Scholar 

  2. Scott G. Why degradable polymers? In: Scott G, editor. Degradable polymers: principles and applications. London: Chapman and Hall; 1995. p. 1–15.

    Google Scholar 

  3. Griffin GJL. Introduction. In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman and Hall; 1994. p. 1–6.

    Google Scholar 

  4. Siracusa V, Rocculi P, Romani S, Rosa M. Biodegradable biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19:634–43.

    Article  CAS  Google Scholar 

  5. Smutz WP, Daniels AU, Andriano KP, France EP, Heller J. Mechanical test methodology for environmental exposure testing of biodegradable polymers. J Appl Biomater. 2009;2:13–22.

    Article  Google Scholar 

  6. Rosa DS, Lopes DR, Calil MR. Thermal properties and enzymatic degradation of blends of poly(e-caprolactone) with starches. Polym Test. 2005;24:756–61.

    Article  CAS  Google Scholar 

  7. Nanda PK, Rao KK, Kar RK, Nayak PL. Biodegradable polymers. J Therm Anal Calorim. 2007;89:935–40.

    Article  CAS  Google Scholar 

  8. Langmaier F, Mládek M, Mokrejš P, Kolomazník K. Biodegradable packing materials based on waste collagen hydrolysate cured with dialdehyde starch. J Therm Anal Calorim. 2009;93:547–52.

    Article  Google Scholar 

  9. Rosa DS, Guedes CGF, Carvalho CL. Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci. 2007;42:551–7.

    Article  CAS  Google Scholar 

  10. Bourtoom T, Chinnan M. A preparation and properties of rice starch–chitosan blend biodegradable film. LWT Food Sci Technol. 2008;41:1633–41.

    Article  CAS  Google Scholar 

  11. Rodrigues TC, Tavares MIB, Pita VJRR. Natural weathering evaluation of LDPE-mango starch blends by mechanical properties and high field NMR. Macromol Symp. 2007;245:166–9.

    Article  Google Scholar 

  12. Pedroso AG, Rosa DS. Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohydr Polym. 2004;59:1–9.

    Article  Google Scholar 

  13. Wojtowicz A, Janssen LPBM, Moscicki L. Blends of natural and synthetic polymers. In: Janssen L, Moscicki L, editors. Thermoplastic starch: a green material for various industries. Weinheim: Wiley-VCH; 2009. p. 35–52.

    Google Scholar 

  14. Sailaja RRN, Seetharamu S. Itaconic acid-grafted-LDPE as compatibilizer for LDPE-plasticized tapioca starch blends. React Funct Polym. 2008;68:831–41.

    Article  CAS  Google Scholar 

  15. Shujun W, Jiugao Y, Jinglin Y. Preparation and characterization of compatible thermoplastic starch/polyethylene blends. Polym Degrad Stab. 2005;87:395–401.

    Article  Google Scholar 

  16. Swift G, Baciu R, Chiellini E. Environmentally degradable polyolefin. In: Celina MC, Wiggins JS, Billingham NC, editors. Polymer degradation and performance. Washington, DC: American Chemical Society; 2009. p. 2–16.

    Chapter  Google Scholar 

  17. Ramis X, Cadenato A, Salla JM, Morancho JM, Valle’s A, Contat L, Ribes A. Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polym Degrad Stab. 2004;86:483–91.

    Article  CAS  Google Scholar 

  18. Rosa DS, Bardi MAG, Machado LDB, Dias DB, Silva LGA, Kodama Y. Influence of thermoplastic starch plasticized with biodiesel glycerol on thermal properties of PP blends. J Therm Anal Calorim. 2009;97:565–70.

    Article  Google Scholar 

  19. Santonja-Blasco L, Contat-Rodrigo L, Moriana-Torro R, Ribes-Greus A. Thermal and characterization of polyethylene blends with a biodegradable master batch subjected to thermo-oxidative treatment and subsequent soil burial test. J Appl Polym Sci. 2007;106:2218–30.

    Article  CAS  Google Scholar 

  20. Sobhi H, Matthews ME, Grandy B, Masnovi J, Riga AT. Selecting polymers for medical devices based on thermal analytical methods. J Therm Anal Calorim. 2008;93:535–9.

    Article  CAS  Google Scholar 

  21. Müller C, Yamashita F, Laurindo J. Biological degradation of plastics: a comprehensive review. Carbohydr Polym. 2008;72:82–7.

    Article  Google Scholar 

  22. Ma X, Yu J. The effects of plasticizers containing amide groups on the properties of thermoplastic starch. Starch. 2004;56:545–51.

    Article  CAS  Google Scholar 

  23. Pushpadass HA, Kumar A, Jackson DS, Wehling RL, Dumais JJ, Hanna MA. Macromolecular changes in extruded starch-films plasticized with glycerol, water and stearic acid. Starch. 2009;61:256–66.

    Article  CAS  Google Scholar 

  24. Teixeira E, Pasquini D, Curvelo A, Corradini E, Belgacem M, Dufresne A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym. 2009;78:422–31.

    Article  CAS  Google Scholar 

  25. Pushpadass HA, Hanna MA. Age-induced changes in the microstructure and selected properties of extruded starch films plasticized with glycerol and stearic acid. Ind Eng Chem Res. 2009;48:8457–63.

    Article  CAS  Google Scholar 

  26. Habitante AMBQ, Sobral PJA, Carvalho RA, Solorza-Feria J, Bergo PVA. Phase transitions of cassava starch dispersions prepared with glycerol solutions. J Therm Anal Calorim. 2008;93:599–604.

    Article  CAS  Google Scholar 

  27. Hájek M, Skopal F, Machek J. Determination of free glycerol in biodiesel. Eur J Lipid Sci Technol. 2006;108:666–9.

    Article  Google Scholar 

  28. Meher LC, Vidya D, Naik SN. Technical aspects of biodiesel production by transesterification: a review. Renew Sustain Energy Rev. 2006;10:248–68.

    Article  CAS  Google Scholar 

  29. Yazdani SS, Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol. 2007;18:213–9.

    Article  CAS  Google Scholar 

  30. Bournay L, Casanave D, Delfort B, Hillion G, Chodorge JA. New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today. 2005;106:190–2.

    Article  CAS  Google Scholar 

  31. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng. 2005;100:260–5.

    Article  CAS  Google Scholar 

  32. Haas MJ, McAloon AJ, Yee WC, Foglia TA. A process model to estimate biodiesel production costs. Bioresour Technol. 2006;97:671–8.

    Article  CAS  Google Scholar 

  33. Kasteren JMN, Nisworo AP. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recycl. 2007;50:442–58.

    Article  Google Scholar 

  34. Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev. 2005;9:363–78.

    Article  Google Scholar 

  35. Arroyo M, Zitzumbo R, Avalos F. Composites based on PP/EDM blends and aramide short fibres. Morphology/behavior relationship. Polymer. 2000;42:6351–9.

    Article  Google Scholar 

  36. Da Róz AL, Carvalho AJF, Gandini A, Curvelo AAS. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym. 2006;63:417–24.

    Article  Google Scholar 

  37. Thakore LM, Desai S, Sarawabe BD, Devi S. Studies on biodegradability, morphology and thermo-mechanical properties of LDPE/modified starch blends. Eur Polym J. 2001;37:151–60.

    Article  CAS  Google Scholar 

  38. Lima JA, Felisberti MI. Poly(ethylene-co-vinyl alcohol) and poly(methyl methacrylate) blends: phase behavior and morphology. Eur Polym J. 2008;44:1140–8.

    Article  Google Scholar 

  39. Ramkumar DHS, Bhattacharya M. Effect of crystallinity on the mechanical properties of starch/synthetic polymer blends. J Mater Sci. 1997;32:2565–72.

    Article  CAS  Google Scholar 

  40. Wang S, Yu J, Yu J. Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion. Polym Int. 2004;54:279–85.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by CNPq (grant nos. 304577/2004-9 and 471177-2006-7), FAPESP (grant no. 04/13359-8), and the Universidade São Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Rosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, D.S., Bardi, M.A.G., Machado, L.D.B. et al. Starch plasticized with glycerol from biodiesel and polypropylene blends. J Therm Anal Calorim 102, 181–186 (2010). https://doi.org/10.1007/s10973-010-0828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0828-3

Keywords

Navigation