Skip to main content
Log in

Thermal, UV and FTIR spectral studies in alkali metal cinnamates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A single crystal of sodium and potassium cinnamates was grown by slow evaporation of methanol solution at room temperature. The effect of metals sodium and potassium on the electronic structure of cinnamic acid was studied. In this research many analytical methods such as FTIR, UV, second harmonic generation (SHG) and TG–DTA were used: The spectroscopic studies lead to conclusions containing the distribution of the electronic charge in molecule, the delocalisation of π electrons and the reactivity of metal complexes. The SHG efficiency is more pronounced in the presence of sodium and potassium dopant in the growth medium. Incorporation of sodium and potassium increase the thermal stability ensuring the suitability of material for possible non-linear optical (NLO) application up to 180 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iman A, Vera B, Li D, Chengyun G, Kathleen K, Volker E, et al. Polymorphism of cinnamic and α-truxillic acids. Cryst Growth Design. 2005;5:2210–7.

    Article  Google Scholar 

  2. Fernandes MA, Levendis DC, Koning CB. Solvate and polymorphs of ortho-ethoxy-trans-cinnamic acid: the crystal and molecular structures. Cryst Eng. 2001;4:215–31.

    Article  CAS  Google Scholar 

  3. Shinbyoung A, Harris KDM, Benson M, Dimple MS. Polymorphic phase transformation in the 3-bromo-trans-cinnamic acid system. J Solid State Chem. 2001;10:156–61.

    Google Scholar 

  4. Monika K, Renata S, Wlodzimierz L. The spectroscopic (FT-IR, FT-Raman and H, C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates. J Mol Struct. 2007;8:572–80.

    Google Scholar 

  5. Sharma BL, Jamwal R, Kant R. Thermodynamic and lamella models relationship for the eutectic system benzoic acid-cinnamic acid. Crystal Res Technol. 2004;39:454–64.

    Article  CAS  Google Scholar 

  6. Babkov LM, Baran J, Davydova NA, Drozd D, Pyshkin OS, Uspenskiy KE. Influence of the bromo group on the vibrational spectra and macroscopic properties of benzophenone derivatives. J Mol Struct. 2008;887:87–91.

    Article  CAS  Google Scholar 

  7. Theo H, Wilfried T, Christoph L. Photodimerization dynamics in α-cyano-4-hydroxycinnamic and sinapinic acid crystals. Chem Phys Lett. 2007;443:107–12.

    Article  Google Scholar 

  8. Fernandes MA, Levendis DC. Photodimerization of the α’-polymorph of ortho-ethoxy-trans-cinnamic acid in the solid state. Acta Crystallogr B. 2004;B60:315–24.

    Article  CAS  Google Scholar 

  9. Manuel A, Demetrius C, Levendis FR, Ludwig S. A new polymorph of ortho-ethoxy-trans-cinnamic acid: single-to-single crystal phase transformation and mechanism. Acta Crystallogr B. 2004;B60:300–14.

    Google Scholar 

  10. Samantha DM, Matthew J, Peter H, Samantha L. The photodimerisation of the α-and β-forms of trans-cinnamic acid: a study of single crystals by vibrational microspectroscopy. Spectrochimica Acta Part A. 2003;59:629–35.

    Article  Google Scholar 

  11. Sangwal K, Mielniczek-Brzoska E. Effect of impurities on metastable zone width for the growth of ammonium oxalate monohydrate crystals from aqueous solutions. J Cryst Growth. 2004;267:662–75.

    Article  CAS  Google Scholar 

  12. Mojumdar SC, Raki L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate-poly(acrylic acid) nanocomposite materials. J Therm Anal Calorim. 2006;85:99–105.

    Article  CAS  Google Scholar 

  13. Madhurambal G, Ramasamy P, Anbusrinivasan P, Mojumdar SC. Thermal properties, induction period, interfacial energy and nucleation parameters of solution grown benzophenone. J Therm Anal Calorim. 2007;90:673–9.

    Article  CAS  Google Scholar 

  14. Henryk T, Magdalena J. Study of hydrogen bond polarized IR spectra of cinnamic acid crystals. J Mol Struct. 2004;707:97–108.

    Article  Google Scholar 

  15. Paresh C. Second order polarisability of p-substituted cinnamic acids. Chem Phys Lett. 1996;248:27–30.

    Article  Google Scholar 

  16. Mojumdar SC, Melnik M, Jona E. Thermal and spectral properties of Mg(II) and Cu(II) complexes with heterocyclic N-donor ligands. J Anal Appl Pyrolysis. 2000;53:149–60.

    Article  CAS  Google Scholar 

  17. Meenakshisundarm SP, Parthiban S, Madhurambal G, Mojumdar SC. Effect of chelating agent (1,10-phenanthroline) on potassium hydrogen phthalate crystals. J Therm Anal Calorim. 2008;94:21–5.

    Article  Google Scholar 

  18. Skorsepa JS, Gyoryova K, Melnik M. Preparation, identification and thermal properties of (CH3CH2COO)2Zn.2L.H2O (L = thiourea, nicotinamide, caffeine or theorbromine). J Therm Anal. 1995;44:169–77.

    Article  CAS  Google Scholar 

  19. Ondrusova D, Jona E, Simon P. Thermal properties of N-ethyl-N-phenyldithiocarbamates and their influence on the kinetics of cure. J Therm Anal Calorim. 2002;67:147–52.

    Article  CAS  Google Scholar 

  20. Verma RK, Verma L, Ranjan M, Verma BP, Mojumdar SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:27–31.

    Article  CAS  Google Scholar 

  21. Bruce C, John R. A mechanistic study of the epoxidation of cinnamic acid by hydrogen peroxide catalysed by manganese 1,4,7-trimethyl-1,4,7-triazacyclononane complexes. J Mol Catal A. 2004;219:265–72.

    Article  Google Scholar 

  22. Madhurambal G, Ramasamy P, Anbusrinivasan P, Vasudevan G, Kavitha S, Mojumdar SC. Growth and characterization studies of 2-bromo-4′-chloro-acetophenone (BCAP) crystals. J Therm Anal Calorim. 2008;94:59–62.

    Article  CAS  Google Scholar 

  23. Mojumdar SC, Melnik M, Jona E. Thermoanalytical investigation of magnesium(II) complexes with pyridine as bio-active ligand. J Therm Anal Calorim. 1999;56:541–6.

    Article  CAS  Google Scholar 

  24. Mojumdar SC, Madhurambal G, Saleh MT. A study on synthesis and thermal, spectral and biological properties of carboxylato-Mg(II) and carboxylate-Cu(II) complexes with bioactive ligands. J Therm Anal Calorim. 2005;81:205–10.

    Article  CAS  Google Scholar 

  25. Mojumdar SC, Miklovic J, Krutosikova A, Valigura D, Stewart JM. Furopyridines and furopyridine-Ni(II) complexes—synthesis, thermal and spectral characterization. J Therm Anal Calorim. 2005;81:211–5.

    Article  CAS  Google Scholar 

  26. Madhurambal G, Mojumdar SC, Hariharan S, Ramasamy P. TG, DTC, FT-IR and Raman spectral analysis of Zna/Mgb ammonium sulfate mixed crystals. J Therm Anal Calorim. 2004;78:125–33.

    Article  CAS  Google Scholar 

  27. Mojumdar SC. Thermoanalytical and IR-spectral investigation of Mg(II) complexes with heterocyclic ligands. J Therm Anal Calorim. 2001;64:629–36.

    Article  CAS  Google Scholar 

  28. Kurtz SK, Perry TT. A powder technique for the evaluation of nonlinear optical materials. J Appl Phys. 1968;39:3798–813.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Mojumdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhurambal, G., Ravindran, B., Mariappan, M. et al. Thermal, UV and FTIR spectral studies in alkali metal cinnamates. J Therm Anal Calorim 100, 811–815 (2010). https://doi.org/10.1007/s10973-010-0760-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0760-6

Keywords

Navigation