Skip to main content
Log in

Size and purity of gold nanoparticles changes with different types of thiolate ligands

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gold nanoparticles (Au-NPs) were prepared by a surfactant-free single-phase reduction of hydrogen tetrachloroaurate(III) hydrate in the presence of different organic thiol ligands. Sizes, size distributions, and crystallinity of the Au-NPs were determined by high-resolution transmission electron microscopy and powder X-ray diffraction, whereas thermogravimetric analysis provided information on the organic ligand-to-gold ratios as well as amounts of contaminants. A systematic decrease in size with increasing conical bulk of the thiolate ligand is observed but large size distributions and contamination of the generated Au-NPs prohibit detailed mechanistic studies. A first-generation Fréchet dendron thiol produced the smallest and cleanest Au-NPs of the narrowest size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brust M, Kiely CJ. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A. 2002;202:175–86.

    Article  CAS  Google Scholar 

  2. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.

    Article  CAS  Google Scholar 

  3. Schmid G, Corain B. Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem. 2003;2003:3081–98.

    Article  Google Scholar 

  4. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105:1025–102.

    Article  CAS  Google Scholar 

  5. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP. Metal nanoparticles and their assemblies. Chem Soc Rev. 2000;29:27–35.

    Article  CAS  Google Scholar 

  6. Schmid G, editor. Nanoparticles. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  7. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. Chem Commun. 1994;801–2.

  8. Yee C, Scotti M, Ulman A, White H, Rafailovich M, Sokolov J. One-phase synthesis of thiol-functionalized platinum nanoparticles. Langmuir. 1999;15:4314–6.

    Article  CAS  Google Scholar 

  9. Yee CK, Jordan R, Ulman A, White H, King A, Rafailovich M, et al. Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride. Langmuir. 1999;15:3486–91.

    Article  CAS  Google Scholar 

  10. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR, et al. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir. 1998;14:17–30.

    Article  CAS  Google Scholar 

  11. Leff DV, Ohara PC, Heath JR, Gelbart WM. Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem. 1995;99:7036–41.

    Article  CAS  Google Scholar 

  12. Quiros I, Yamada M, Kubo K, Mizutani J, Kurihara M, Nishihara H. Preparation of alkanethiolate-protected palladium nanoparticles and their size dependence on synthetic conditions. Langmuir. 2002;18:1413–8.

    Article  CAS  Google Scholar 

  13. Whetten RL, Shafigullin MN, Khoury JT, Schaaf TG, Vezmar I, Alvarez MM, et al. Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res. 1999;32:397–406.

    Article  CAS  Google Scholar 

  14. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–70.

    Article  CAS  Google Scholar 

  15. Groenbeck H, Walter M, Haekkinen H. Theoretical characterization of cyclic thiolated gold clusters. J Am Chem Soc. 2006;128:10268–75.

    Article  CAS  Google Scholar 

  16. Howell JAS. Structure and bonding in cyclic thiolate complexes of copper, silver and gold. Polyhedron. 2006;25:2993–3005.

    Article  CAS  Google Scholar 

  17. Akola J, Walter M, Whetten RL, Hakkinen H, Gronbeck H. On the structure of thiolate-protected Au-25. J Am Chem Soc. 2008;130:3756–7.

    Article  CAS  Google Scholar 

  18. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc Natl Acad Sci USA. 2008;105:9157–62.

    Article  CAS  Google Scholar 

  19. Chen SW, Templeton AC, Murray RW. Monolayer-protected cluster growth dynamics. Langmuir. 2000;16:3543–8.

    Article  CAS  Google Scholar 

  20. Biswas K, Varghese N, Rao CNR. Growth kinetics of gold nanocrystals: a combined small-angle X-ray scattering and calorimetric study. Small. 2008;4:649–55.

    Article  CAS  Google Scholar 

  21. Hostetler MJ, Stokes JJ, Murray RW. Infrared spectroscopy of three-dimensional self-assembled monolayers: N-alkanethiolate monolayers on gold cluster compounds. Langmuir. 1996;12:3604–12.

    Article  CAS  Google Scholar 

  22. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C. Synthesis and reactions of functionalized gold nanoparticles. Chem Commun 1995;1655–6.

  23. Chen SW, Murray RW. Arenethiolate monolayer-protected gold clusters. Langmuir. 1999;15:682–9.

    Article  CAS  Google Scholar 

  24. Johnson SR, Evans SD, Mahon SW, Ulman A. Alkanethiol molecules containing an aromatic moiety self-assembled onto gold clusters. Langmuir. 1997;13:51–7.

    Article  CAS  Google Scholar 

  25. Venkataramanan M, Ma SG, Pradeep T. 3D monolayers of 1, 4-benzenedimethanethiol on Au and Ag clusters: distinct difference in adsorption geometry with the corresponding 2D monolayers. J Colloid Interface Sci. 1999;216:134–42.

    Article  CAS  Google Scholar 

  26. Kim M-K, Jeon Y-M, Jeon WS, Kim H-J, Hong SG, Park CG, Kim K. Novel dendron-stabilized gold nanoparticles with high stability and narrow size distribution. Chem Commun 2001;667–8.

  27. Gopidas KR, Whitesell JK, Fox MA. Nanoparticle-cored dendrimers: synthesis and characterization. J Am Chem Soc. 2003;125:6491–502.

    Article  CAS  Google Scholar 

  28. Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S. Dendron-controlled nucleation and growth of gold nanoparticles. Angew Chem Int Ed. 2001;40:549–52.

    Article  CAS  Google Scholar 

  29. Waters CA, Mills AJ, Johnson KA, Schiffrin DJ. Purification of dodecanethiol derivatised gold nanoparticles. Chem Commun. 2003;540–1.

  30. Rowe MP, Plass KE, Kim K, Kurdak C, Zellers ET, Matzger AJ. Single-phase synthesis of functionalized gold nanoparticles. Chem Mater. 2004;16:3513–7.

    Article  CAS  Google Scholar 

  31. Jia W, McLachlan J, Xu J, Tadayyon SM, Norton PR, Eichhorn SH. Characterization of Au and Pd nanoparticles by high-temperature TGA-MS. Can J Chem. 2006;84:998–1005.

    Article  CAS  Google Scholar 

  32. Iqbal M, McLachlan J, Jia W, Braidy N, Botton G, Eichhorn SH. Ligand effects on the size and purity of Pd nanoparticles. J Therm Anal Calorim. 2009;96:15–20.

    Article  CAS  Google Scholar 

  33. Love CS, Ashworth I, Brennan C, Chechik V, Smith DK. Dendritic nanoparticles: the impact of ligand cross-linking on nanocore stability. Langmuir. 2007;23:5787–94.

    Article  CAS  Google Scholar 

  34. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture—a new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.

    Article  CAS  Google Scholar 

  35. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL. Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B. 1997;101:3706–12.

    Article  CAS  Google Scholar 

  36. Sarathy KV, Raina G, Yadav RT, Kulkarni GU, Rao CNR. Thiol-derivatized nanocrystalline arrays of gold, silver and platinum. J Phys Chem B. 1997;101:9876–80.

    Article  CAS  Google Scholar 

  37. Wang ZL, Harfenist SA, Whetten RL, Bentley J, Evans ND. Bundling and interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices. J Phys Chem B. 1998;102:3068–72.

    Article  CAS  Google Scholar 

  38. Zanchet D, Hall BD, Ugarte D. Structure population in thiol-passivated gold nanoparticles. J Phys Chem B. 2000;104:11013–8.

    Article  CAS  Google Scholar 

  39. Schmid G. Large clusters and colloids—metals in the embryonic state. Chem Rev. 1992;92:1709–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science and Engineering Research Council (NSERC) of Canada, the Canadian Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT), the Ontario Centres of Excellence (OCE), and Barrick Gold for funding. McLachlan thanks NSERC for undergraduate summer research awards (USRA). We are also grateful to Fred Pearson at McMaster University for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Holger Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, W., McLachlan, J., Xu, J. et al. Size and purity of gold nanoparticles changes with different types of thiolate ligands. J Therm Anal Calorim 100, 839–845 (2010). https://doi.org/10.1007/s10973-010-0711-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0711-2

Keywords

Navigation