Skip to main content
Log in

The calorimetric study of some guanidine derivatives involved in living bodies nitrogen metabolism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The energies of combustion of creatine (anhydrous and monohydrate), creatinine, and arginine were measured in a static bomb adiabatic calorimeter, in pure oxygen at 3,040 kPa. The derived standard enthalpies of formation in solid state of the above-mentioned compounds are, respectively, −520.4 ± 4.3, −809.7 ± 1.3, −204.2 ± 7.0, and −634.8 ± 2.3 kJ mol−1 . The data of enthalpy of formation are compared with literature values and with estimated values by means of group additivity. The dehydration of creatine monohydrate and the processes occurring in the three guanidine derivatives at temperatures exceeding 200 °C were investigated by means of DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huffman HM, Ellis EL, Fox SW. Thermal data. VI. The heats of combustion and free energies of seven compounds containing nitrogen. J Am Chem Soc. 1936;58:1728–33.

    Article  CAS  Google Scholar 

  2. Johnson WH. The enthalpies of combustion and formation of nicotinic acid and creatinine. J Res NBS. 1975;79:425–9.

    Google Scholar 

  3. Yang XW, Liu JR, Gao SL, Hou YD, Shi QZ. Determination of combustion energies of thirteen amino acids. Thermochim Acta. 1999;329:109–15.

    Article  Google Scholar 

  4. Huffman HM, Fox SW, Ellis EL. Thermal data. VII. The heats of combustion of seven amino acids. J Am Chem Soc. 1937;59:2144–9.

    Article  CAS  Google Scholar 

  5. Oscarson JL, Rowley RL, Wilding WV, Izatt RM. Industrial need for accurate thermophysical data and for reliable prediction methods. J Therm Anal Calorim. 2008;92:465–70.

    Article  CAS  Google Scholar 

  6. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. Part I. J Therm Anal Calorim. 2007;90:653–62.

    Article  CAS  Google Scholar 

  7. Westrum EF. Presentation of combustion calorimetric data in the primary literature. In: Sunner S, Månsson M, editors. Combustion calorimetry, experimental chemical thermodynamics, Chap. 7, vol. 1. Oxford: Pergamon Press; 1979.

  8. Ribeiro da Silva MAV, Cabral JITA. Standard molar enthalpy of formation of 1-cyano-acetylpiperidine. J Therm Anal Calorim. 2008;92:59–62.

    Article  CAS  Google Scholar 

  9. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, Chap. 3, vol. 1. New York: Interscience; 1956.

  10. Chase MW Jr. NIST-JANAF thermochemical tables, fourth edition. J Phys Chem Ref Data Monogr. 1998;9:1–1951.

    Google Scholar 

  11. Washburn EW. Standard states for bomb calorimetry. J Res Natl Bur Stand. 1933;10:525–58.

    CAS  Google Scholar 

  12. Cox JD, Pilcher G. Thermochemistry of organic and organometallic compounds. London: Academic Press; 1970.

    Google Scholar 

  13. CODATA Bulletin nr. 28 (April 1978), Recommended key values for thermodynamics; 1977.

  14. Pedley JB, Naylor RN, Kirby SP. Thermochemical data of organic compounds. 2nd ed. London: Chapman and Hall; 1986.

    Google Scholar 

  15. Dash KA, Yoonsun Mo, Pyne A. Solid-state properties of creatine monohydrate. J Pharm Sci. 2002;91:708–18.

    Article  CAS  Google Scholar 

  16. Malaj L, Censi R, Di Martino P. Mechanisms for dehydration of three sodium naproxen hydrates. Cryst Growth Des. 2009;9:2128–36.

    Article  CAS  Google Scholar 

  17. Malik T, Karr T, Bocelli G, Musatti A. Structural and thermal characterization of l-arginine dihydrate—a nonlinear optical material. Cryst Res Technol. 2006;41:280–4.

    Article  Google Scholar 

  18. Kofler L, Sitte H. Melting point determination of substances which melt with decomposition. Monatsh Chem. 1950;81:619–26.

    Article  CAS  Google Scholar 

  19. Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C-H-N-O-S-halogen compounds at 298.15 K. J Phys Chem Ref Data. 1993;22:805–1160.

    Article  CAS  Google Scholar 

  20. Roux MV, Smith PJ, Liebman JF. Paradigms and paradoxes: thoughts on the enthalpy of formation of guanidine and its monosubstituted derivatives. Struct Chem. 2005;16(1):73–5.

    Article  CAS  Google Scholar 

  21. Kabo GYa, Miroshnichenko EA, Frenkel ML, Kozyro AA, Siminskii VV, Krasulin AP, Vorob’eva VP, Lebedev YuA. Thermochemistry of urea alkyl derivatives. Bull Akad Sci USSR Div Chem Sci 1990;39:662–7.

    Article  Google Scholar 

  22. Salmon A, Dalmazzone DJ. Prediction of enthalpy of formation in the solid state at 298.15 K using second-order group contributions—part 2: carbon-hydrogen, carbon-hydrogen oxygen, and carbon-hydrogen-nitrogen-oxygen compounds. Phys Chem Ref Data. 2007;36:19–58.

    Article  CAS  Google Scholar 

  23. Contineanu I, Neacsu A, Perisanu St. The standard enthalpies of formation of l-asparagine and l-α-glutamine. Thermochim Acta. 2010;497:96–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the research grant—GAR nr. 50/06.08.2007 of the Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to St. Perisanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

St. Perisanu, Contineanu, I., Neacsu, A. et al. The calorimetric study of some guanidine derivatives involved in living bodies nitrogen metabolism. J Therm Anal Calorim 101, 1127–1133 (2010). https://doi.org/10.1007/s10973-010-0682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0682-3

Keywords

Navigation