Skip to main content
Log in

Space charge analysis in polyimide (kapton–H) samples

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The space charge trapping/detrapping in thermally charged polyimide (PI) samples have been studied by means of “Final Thermally Stimulated Discharge Current” (FTSDC). We investigate the effects associated with space charge behavior in PI near glass transition region. The FTSDC spectra consist of space charge peak attributed trapping of charges at different trapping levels. The peak positions are found to be very sensitive with poling time, discharging time, and heating rate. The apparent activation energy distributed in the range from 0.51 to 1.12 eV, and the charge released has been found to be varying with poling temperature (T p) and poling time (t c)/discharging time (t d). The decay of space charge (Q) resembled an agreement with interfacial polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bloor M, Brook RJ, Flemings MC, Mahajan S, editors. The encyclopedia of advanced materials. New York: Elsevier Science ltd; 1994. p. 2950.

    Google Scholar 

  2. Sessler GM. Charge distribution and transport in polymers. IEEE Trans Diel Elec Insul. 1997;4:614.

    Article  CAS  Google Scholar 

  3. Chowdhury B. Assessment of the nature of the nature of depolarization current in thermally treated kapton polyimide. J Therm Anal Calorim. 2001;64:433–41.

    Article  CAS  Google Scholar 

  4. Algiriswamy AA, Naryan KS, Raju G. Relaxation processes in aromatic polyimide. J Phys D Appl Phys. 2002;35(21):2850–6.

    Article  Google Scholar 

  5. Maneesha G, Quamara JK. Effect of high energy Uranium-238 ion-irradiation on the dielectric relaxation behaviour of Kapton-H polyimide film. Thermally stimulated depolarization current study. Nuc Ins Methods Phys Res B: Beam Interac Mat Atoms. 2001;179:83–8.

    Article  Google Scholar 

  6. Kripotou S, Pissis P, Bershtein VA, Syselc P, Hobzova R. Dielectric studies of molecular mobility in hybrid polyimide–poly(dimethylsiloxane) networks. Polymer. 2003;44:2781–91.

    Article  CAS  Google Scholar 

  7. Sacher E. Dielectric properties of polyimide film. IEEE Trans Electr Insu. 1979;EI-14:84–93.

    Google Scholar 

  8. Neagu ER, Neagu RM. A new method for analysis of isothermal discharging current. Thin Solid Films. 2000;358:283–91.

    Article  CAS  Google Scholar 

  9. Williams G. Dielectric relaxation spectroscopy of polymers revealing dynamics in isotropic and anisotropic stationary systems and changes in molecular mobility in non-stationary systems. Polymer. 1994;35:1915–22.

    Article  CAS  Google Scholar 

  10. Ahmad MT, Fahmy T. Distributed relaxations in PVC/PEMA polymer blends as revealed by thermostimulated depolarization current. Polym Testing. 1999;18:589–99.

    Article  Google Scholar 

  11. Neagu ER. Use of the final thermally stimulated discharge current technique to analyze space charge behavior in dielectrics. Appl Phys Lett. 2003;83:4229–31.

    Article  CAS  Google Scholar 

  12. CarmoLanca M, Eugen N, Jose N, Marat M. Combined isothermal and non isothermal current measurement applied to space charge studies in low–density polyethylene. J Phys D Appl Phys. 2002;35:L29–32.

    Article  Google Scholar 

  13. Neagu ER, Jose N, Marat M. Anomalous transient currents in low-density polyethylene. Jpn J Appl Phys. 2001;40:L810–2.

    Article  CAS  Google Scholar 

  14. Bauer-Gogonea S, Bauer S, Wirges W, Gerhard–Multhaupt R. Pyroelectrical investigation of the dipole orientation in nonlinear optical polymers during and after photoinduced poling. J Appl Phys. 1994;76:2627–35.

    Article  CAS  Google Scholar 

  15. Neagu ER, Neagu RM. The study of weak molecular movements in nonpolar materials by decorating the structure with space charge. J Optoelectr Adv Mater. 2006;8:962–6.

    CAS  Google Scholar 

  16. Sessler GM. Spatial depth and density of charge in electrets. J Appl Phys. 1972;43:408–11.

    Article  Google Scholar 

  17. Gillham JK, Hallock KD, Stadnacki SJ. Thermomechanical and thermogravimetric analyses of systematic series of polyimides. J Appl Polym Sci. 1972;16:2595–602.

    Article  CAS  Google Scholar 

  18. McCrum NG, Read BE, Williams G. Anelastic and dielectric effects in polymeric solids. New York: Willey; 1967. chap 2.

    Google Scholar 

  19. Delbreilh L, Negahban M, Benzohra M, Lacabanne C, Saiter JM. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim. 2008;93:677–87.

    Article  Google Scholar 

  20. Halpern VJ. Analysis of thermally stimulated currents. J Phys D Appl Phys. 1994;27:2628–35.

    Article  CAS  Google Scholar 

  21. Dargent E, Kattan M, Cabot C, Lebaudy P, Ledru P, Grenet J. Compensation effect observed in thermally stimulated depolarization currents analysis of polymers. J Appl Polym Sci. 1999;74:2716–23.

    Article  CAS  Google Scholar 

  22. Bhardwaj RP, Quamara JK, Nagpaul KK, Sharma BL. Non-isothermal depolarization current studies in kapton-H thermoelectrets. Phys Stat Sol (a). 1983;77:347–54.

    Article  CAS  Google Scholar 

  23. Grenet J, Marais S, Legras MT, Chevalier P, Saiter JM. DSC and TSDC study of unsaturated polyester resin: influence of the promoter content. J Therm Anal Calorim. 2000;61:719–30.

    Article  CAS  Google Scholar 

  24. Perlmann MM. Thermal currents and the internal polarization in carnauba wax electrets. J Appl Phys. 1971;42:2645–52.

    Article  Google Scholar 

  25. Bucci C, Fieschi R. Ionic thermocurrents in dielectrics. Phys Rev. 1966;148:816–23.

    Article  CAS  Google Scholar 

  26. Runt JP, Fitzgerald JJ. Dielectric spectroscopy of polymeric materials. Washington, DC: American Chemical Society; 1997.

    Google Scholar 

  27. Neagu ER. Combined isothermal and nonisothermal dc measurements to analyze space-charge behaviour in dielectric materials. J Appl Phys. 2005;97:044103–4.

    Article  Google Scholar 

  28. Maneesha G, Quamara JK. Multiplicity relaxation processes in high-energy ion irradiated kapton-H polyimide: thermally stimulated depolarization current study. Nucl Instrum Methods Phys Res B. 2006;246:355–63.

    Article  Google Scholar 

  29. Qingquan L. Thermally stimulated current studies on polyimide film. Progr Colloid Polym Sci. 1988;78:119–22.

    Article  CAS  Google Scholar 

  30. Sessler GM, Hahn B, Yoon DY. Electrical conduction in polyimide films. J Appl Phys. 1986;60:318–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. S. Gaur gratefully acknowledges the financial support of Defence Research Development Organization (DRDO), New Delhi, India (Vide letter no. ERIP/ER/0804419/M/01/1113). We are also thankful to Dr. A. Gupta, Director, UGC-DAE Consortium, Indore (India) for providing DSC facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Additional information

Hindustan College of Science and Technology—affiliated to UP Technical University, Lucknow, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, M.S., Ramlal & Tiwari, R.K. Space charge analysis in polyimide (kapton–H) samples. J Therm Anal Calorim 101, 1079–1084 (2010). https://doi.org/10.1007/s10973-010-0676-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0676-1

Keywords

Navigation