Skip to main content
Log in

Interactions between AuCl4 and CTA+ ions in water

Enthalpies for the formation of the precipitate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solubility of hexadecyltrimethylammonium tetrachloroaurate (CTA·AuCl4) in water was measured at different temperatures of 288.2, 293.2, 298.2, 303.2, and 308.2 K. The enthalpy change associated with the formation of the CTA·AuCl4 precipitate was estimated on the basis of the van’t Hoff equation and was found to be −42.5 ± 2.8 kJ mol−1 at 298.2 K. The calorimetric enthalpy change for the CTA·AuCl4 precipitate formation was directly determined by isothermal titration calorimetry performed at 298.2 K and was found to agree well with that estimated from the van’t Hoff equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmid G, editor. Nanoparticles: from theory to application. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  2. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 2001;17:6782–6.

    Article  CAS  Google Scholar 

  3. Torigoe K, Esumi K. Preparation of colloidal gold by photoreduction of tetracyanoaurate(−)-cationic surfactant complexes. Langmuir. 1992;8:59–63.

    Article  CAS  Google Scholar 

  4. Yu YY, Chang SS, Lee CL, Wang CR. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B. 1997;101:6661–4.

    Article  CAS  Google Scholar 

  5. Wang ZL, Gao RP, Nikoobakht B, El-Sayed MA. Surface reconstruction of the unstable 110 surface in gold nanorods. J Phys Chem B. 2000;104:5417–20.

    Article  CAS  Google Scholar 

  6. Kim F, Song JH, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc. 2002;124:14316–7.

    Article  CAS  Google Scholar 

  7. Takezaki M, Kida R, Kato Y, Tominaga T. Preparation of triangular gold nanoparticles by chemical and photoreduction methods. Chem Lett. 2009;38:1022–3.

    Article  CAS  Google Scholar 

  8. Kubota M, Kanazawa Y, Nasu K, Moritake S, Kawaji H, Atake T, et al. Effect of heat treatment on magnetic MgFe2O4 nanoparticles. J Therm Anal Calorim. 2008;92:461–3.

    Article  CAS  Google Scholar 

  9. More A, Verenkar VMS, Mojumdar SC. Nickel ferrite nanoparticles synthesis from novel fumarato-hydrazine precursor. J Therm Anal Calorim. 2008;94:63–7.

    Article  CAS  Google Scholar 

  10. Fini P, Depalo N, Comparelli R, Curri ML, Striccoli M, Castagnolo M, et al. Interactions between surfactant capped CdS nanoparticles and organic solvent. J Therm Anal Calorim. 2008;92:270–7.

    Article  Google Scholar 

  11. Wilhelm E, Battino R. Thermodynamic functions of the solubilities of gases in liquids at 25 °C. Chem Rev. 1973;73:1–9.

    Article  CAS  Google Scholar 

  12. Osborne JC, Palumbo G, Brewer HB, Edelhoch H. The thermodynamics of the self-association of the reduced and carboxymethylated form of ApoA-II from the human high density lipoprotein complex. Biochemistry. 1976;15:317–20.

    Article  CAS  Google Scholar 

  13. Shinoda K. “Iceberg” formation and solubility. J Phys Chem. 1977;81:1300–2.

    Article  CAS  Google Scholar 

  14. Flockhart BD. The effect of temperature on the critical micelle concentration of some paraffin-chain salts. J Colloid Interface Sci. 1961;16:484–92.

    CAS  Google Scholar 

  15. Robins DC, Thomas IL. The effect of counterions on micellar properties of 2-dodecylaminoethanol salts I. Surface tension and electrical conductance studies. J Colloid Interface Sci. 1968;26:407–14.

    Article  CAS  Google Scholar 

  16. Barry BW, Russell GFJ. Prediction of micellar molecular weights and thermodynamics of micellization of mixtures of alkyltrimethylammonium salts. J Colloid Interface Sci. 1972;40:174–94.

    Article  CAS  Google Scholar 

  17. Evans DF, Wightman PJ. Micelle formation above 100°C. J Colloid Interface Sci. 1982;86:515–24.

    Article  CAS  Google Scholar 

  18. Shinoda K, Kobayashi M, Yamaguchi N. Effect of “iceberg” formation of water on the enthalpy and entropy of solution of paraffin chain compounds: the effect of temperature on the critical micelle concentration of lithium perfluorooctane sulfonate. J Phys Chem. 1987;91:5292–4.

    Article  CAS  Google Scholar 

  19. Paredes S, Tribout M, Sepulveda L. Enthalpies of micellization of the quaternary tetradecyl- and cetyltrimethylammonium salts. J Phys Chem. 1984;88:1871–5.

    Article  CAS  Google Scholar 

  20. Jiang N, Li P, Wang Y, Wang J, Yan H, Thomas RK. Aggregation behavior of hexadecyltrimethylammonium surfactants with various counterions in aqueous solution. J Colloid Interface Sci. 2005;286:755–60.

    Article  CAS  Google Scholar 

  21. van Os NM, Daane GJ, Haandrikman G. The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates: III. Determination of the critical micelle concentration and the enthalpy of demicellization by means of microcalorimetry and a comparison with the phase separation model. J Colloid Interface Sci. 1991;141:199–217.

    Article  Google Scholar 

  22. Blandamar MJ, Briggs B, Cullis PM, Engberts BFN. Titration microcalorimetry of mixed alkyltrimethylammonium bromide surfactant aqueous solutions. Phys Chem Chem Phys. 2000;2:5146–53.

    Article  Google Scholar 

  23. Mukerjee P, Mysels KJ. Critical micelle concentration of aqueous surfactant systems. In: National Standard Reference Data Series, vol. 36. Washington, DC: National Bureau of Standards; 1971.

  24. Malliaris A, Le Moigne J, Sturm J, Zana R. Temperature dependence of the micelle aggregation number and rate of intramicellar excimer formation in aqueous surfactant solutions. J Phys Chem. 1985;89:2709–13.

    Article  CAS  Google Scholar 

  25. Mizoue LS, Tellinghuisen J. Calorimetric vs. van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba2+-crown ether complex. Biophys Chem. 2004;100:15–24.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. M. Fukuhara, Okayama University of Science, for thermal gravimetric measurements. This study was supported by “High-Tech Research Center” Project for Private Universities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2006-2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Tominaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takezaki, M., Aoki, H., Kodama, M. et al. Interactions between AuCl4 and CTA+ ions in water. J Therm Anal Calorim 101, 1149–1153 (2010). https://doi.org/10.1007/s10973-009-0659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0659-2

Keywords

Navigation