Skip to main content
Log in

Calorimetric study of the interactions between surfactants and dextran modified with deoxycholic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Dextran modified with deoxycholic acid (Dex-DCA) was synthesized by grafting DCA along the polymer backbone, with degrees of substitution (DS)—2% and 3%. The thermodynamics of the association processes of the mixed systems is followed by isothermal titration calorimetry for sodium deoxycholate/sodium dodecyl sulfate (NaDCA/NaDS), Dex-DCA with different surfactants—Dex-DCA/NaDS, Dex-DCA/NaDCA, and Dex-DCA/DTAB (dodecyltrimethylammonium bromide). Calorimetric measurements for the micellization processes of the pure surfactants in aqueous solution were also performed for comparison with the results obtained for the mixed systems. We have obtained and herein present the enthalpies of micelle formation and critical micelle concentrations for the referred pure surfactants, as well as the interaction and aggregation enthalpies for the mixed systems-surfactant/polymer. The dependence of the observed aggregation behavior on the surfactant and temperature is discussed in detail. Finally, we should stress that calorimetry allowed us to ascertain a very important fact in polymer/surfactant interaction. From the comparison between NaDCA/NaDS and Dex-DCA/NaDS calorimetric titration curves, we could clearly see that the interaction between Dex-DCA and NaDS is driven by the interaction between the bile acid moiety and the surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coello A, Meijide F, Rodriguez Nunez E, Vazquez Tato J. Aggregation behavior of sodium cholate in aqueous solution. J Phys Chem. 1993;97:10186–91.

    Article  CAS  Google Scholar 

  2. D’Alagni M, D’Archivio AA, Galantini L, Giglio E. Structural study of the micellar aggregates of sodium chenodeoxycholate and sodium deoxycholate. Langmuir. 1997;13:5811–5.

    Article  Google Scholar 

  3. Zakrzewska J, Markovic V, Vucelic D, Feigin L, Dembo A, Mogilevsky L. Investigation of aggregation behavior of bile salts by small-angle x-ray scattering. J Phys Chem. 1990;94:5078–81.

    Article  CAS  Google Scholar 

  4. Venkatesan P, Cheng Y, Kahne D. Hydrogen bonding in micelle formation. J Am Chem Soc. 1994;116:6955–6.

    Article  CAS  Google Scholar 

  5. Matsuoka K, Suzuki M, Honda C, Endoa K, Moroi Y. Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem Phys Lipids. 2006;139:1–10.

    Article  CAS  Google Scholar 

  6. Pártay LB, Jedlovszky P, Sega M. Molecular aggregates in aqueous solutions of bile acid salts. Molecular dynamics simulation study. J Phys Chem B. 2007;111:9886–96.

    Article  Google Scholar 

  7. Hofmann AF, Hagey LR. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461–83.

    Article  CAS  Google Scholar 

  8. Wiedmann TS, Kamel L. Examination of the solubilization of drugs by bile salt micelles. J Pharm Sci. 2002;91:1743–64.

    Article  CAS  Google Scholar 

  9. Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99:989–94.

    Article  CAS  Google Scholar 

  10. Nichifor M, Carpov A. Bile acids covalently bound to polysaccharides 1. Esters of bile acids with dextran. Eur Polym J. 1999;35:2125.

    Article  CAS  Google Scholar 

  11. Nichifor M, Lopes A, Carpov A, Melo E. Aggregation in water of dextran hydrophobically modified with bile acids. Macromolecules. 1999;32:7078–85.

    Article  CAS  Google Scholar 

  12. Diancourt F, Braud C, Vert M. Chemical modifications of heparin. II. Hydrophobization of partially N-desulfated heparin. J Bioact Biocompat Polym. 1996;11:203.

    CAS  Google Scholar 

  13. Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan−deoxycholic acid conjugates. Biomacromolecules. 2005;6:1154.

    Article  CAS  Google Scholar 

  14. Huh KM, Lee KY, Kwon IC, Kim YH, Kim C, Jeong SY. Synthesis of triarmed poly(ethylene oxide)−deoxycholic acid conjugate and its micellar characteristics. Langmuir. 2000;16:10566–8.

    Article  CAS  Google Scholar 

  15. Lee KY, Jo WH, Kwon IC, Kim YH, Jeong SY. Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules. 1998;31:378–83.

    Article  CAS  Google Scholar 

  16. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS. Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid. Langmuir. 2003;19:10188–93.

    Article  CAS  Google Scholar 

  17. Avoce D, Liu HY, Zhu XX. N-Alkylacrylamide copolymers with (meth)acrylamide derivatives of cholic acid: synthesis and thermosensitivity. Polymer. 2003;44:1081–7.

    Article  CAS  Google Scholar 

  18. Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, et al. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir. 2004;20:11726–31.

    Article  CAS  Google Scholar 

  19. Paula S, Süs W, Tuchtenhagen J, Blume A. Thermodynamics of micelle formation as a function of temperature: a high sensitivity titration calorimetry study. J Phys Chem. 1995;99:11742–51.

    Article  CAS  Google Scholar 

  20. Garidel P, Hildebrand A, Neubert R, Blume A. Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isothermal titration calorimetry. Langmuir. 2000;16:5267–75.

    Article  Google Scholar 

  21. Jana PK, Moulik SP. Interaction of bile salts with hexadecyltrimethylammonium bromide and sodium dodecyl sulfate. J Phys Chem. 1991;95:9525–32.

    Article  CAS  Google Scholar 

  22. Hildebrand A, Garidel P, Neubert R, Blume A. Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir. 2004;20:320–8.

    Article  CAS  Google Scholar 

  23. Haque ME, Das AR, Moulik SP. Mixed micelles of sodium deoxycholate and polyoxyethylene sorbitan monooleate (Tween 80). J Coll Interf Sci. 1999;217:1–7.

    Article  CAS  Google Scholar 

  24. Sugihara G, Nagadome S, Oh SW, Ko JS. A review of recent studies on aqueous binary mixed surfactant systems. J Oleo Sci. 2008;57:61–92.

    CAS  Google Scholar 

  25. Felippe AC, Schweitzer B, Bó AGD, Eising R, Minatti E, Zanette D. Self-association of sodium cholate with poly(ethylene oxide) cooperatively induced by sodium dodecyl sulfate. Coll. Surf. A Physicochem. Eng. Aspect. 2007;294:247–53.

    Article  CAS  Google Scholar 

  26. de Martins RM, da Silva CA, Becker CM, Samios D, Christoff M, Bica CID. Interaction of (hydroxypropyl) cellulose with anionic surfactants in dilute regime. Colloid Polym Sci. 2006;284:1353–61.

    Article  CAS  Google Scholar 

  27. Thongngam M, McClements DJ. Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate). Food Hydrocoll. 2005;19:813–9.

    Article  CAS  Google Scholar 

  28. Olofsson G, Wang G. Interactions between surfactants and uncharged polymers in aqueous solution studied by microcalorimetry. Pure Appl Chem. 1994;3:527–32.

    Article  Google Scholar 

  29. Wang G. PhD dissertation. Lund University; 1997.

  30. Bloor DM, Holzwarth JF, Wyn-Jones E. Polymer/surfactant interactions. The use of isothermal titration calorimetry and emf measurements in the sodium dodecyl sulfate/poly(N-vinylpyrrolidone) system. Langmuir. 1995;11:2312–3.

    Article  CAS  Google Scholar 

  31. Wang Y, Han B, Yan H, Kwak JCT. Microcalorimetry study of interaction between ionic surfactants and hydrophobically modified polymers in aqueous solutions. Langmuir. 1997;13:3119.

    Article  CAS  Google Scholar 

  32. Bai G, Wang Y, Yan H, Thomas RK, Kwak JCT. Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J Phys Chem B. 2002;106:2153–9.

    Article  CAS  Google Scholar 

  33. Silva RC, Olofsson G, Schillén K, Loh W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry. J Phys Chem B. 2002;106:1239–46.

    Article  Google Scholar 

  34. Bai G, Santos LMNBF, Nichifor M, Lopes A, Bastos M. Thermodynamics of the interaction between a hydrophobically modified polyelectrolyte and sodium dodecyl sulfate in aqueous solution. J Phys Chem B. 2004;108:405–13.

    Article  CAS  Google Scholar 

  35. Bu H, Kjøniksen AL, Elgsaeter A, Nyström B. Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution: calorimetric, rheological, and turbidity studies. Coll Surf A. 2006;278:166–74.

    Article  CAS  Google Scholar 

  36. Dai S, Tam KC. Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate. Langmuir. 2004;20:2177–83.

    Article  CAS  Google Scholar 

  37. Piculell L, Guillemet F, Thuresson K, Shubin V, Ericsson O. Binding of surfactants to hydrophobically modified polymers. Adv Coll Interf Sci. 1996;63:1–21.

    Article  CAS  Google Scholar 

  38. Zana R, Guveli D. Fluorescence probing study of the association of bile salts in aqueous solutions. J Phys Chem. 1985;89:1687–90.

    Article  CAS  Google Scholar 

  39. Ninomiya R, Matsuoka K, Moroi Y. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts. Biochim Biophys Acta. 2003;1634:116–25.

    CAS  Google Scholar 

  40. Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochim Biophys Acta. 2002;1580:189–99.

    CAS  Google Scholar 

  41. Bai G, Nichifor M, Lopes A, Bastos M. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length. J Phys Chem B. 2005;109:518–25.

    Article  CAS  Google Scholar 

  42. Bai G, Lopes A, Bastos M. Thermodynamics of micellization of alkylimidazolium surfactants in aqueous solution. J Chem Thermodyn. 2008;40:1509–16.

    Article  CAS  Google Scholar 

  43. Bijma K, Engberts J, Blandamer MJ, Cullis PM, Last PM, Irlam KD, et al. Classification of calorimetric titration plots for alkyltrimethylammonium and alkylpyridinium cationic surfactants in aqueous solutions. J Chem Soc Faraday Trans. 1997;93:1579–84.

    Article  CAS  Google Scholar 

  44. Andersson B, Olofsson G. Calorimetric study of non-ionic surfactants. Enthalpies and heat-capacity changes for micelle formation in water of C8E4 and Triton X-100 and micelle size of C8E4. J Chem Soc Faraday Trans 1. 1988;84:4087–95.

    Article  CAS  Google Scholar 

  45. Van Os NM, Daane GJ, Haandrikman GJ. The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates: III. Determination of the critical micelle concentration and the enthalpy of demicellization by means of microcalorimetry and a comparison with the phase separation model. Coll Interf Sci. 1991;141:199–217.

    Article  Google Scholar 

  46. Wang G, Olofsson G. Ethyl hydroxyethyl cellulose and ionic surfactants in dilute solution. Calorimetric and viscosity study of the interaction with sodium dodecyl sulfate and some cationic surfactants. J Phys Chem. 1995;99:5588–96.

    Article  CAS  Google Scholar 

  47. Bashford MT, Woolley EM. Enthalpies of dilution of aqueous decyl-, dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromides at 10, 25, 40, and 55°C. J Phys Chem. 1985;89:3173–9.

    Article  CAS  Google Scholar 

  48. Bai G, Wang J, Yan H, Li Z, Thomas RK. Thermodynamics of molecular self-assembly of two series of double-chain singly charged cationic surfactants. J Phys Chem B. 2001;105:9576–80.

    Article  CAS  Google Scholar 

  49. Gill SJ, Wadsö I. An equation of state describing hydrophobic interactions. Proc Natl Acad Sci USA. 1976;73:2955–8.

    Article  CAS  Google Scholar 

  50. Bai G, Catita JAM, Nichifor M, Bastos M. Microcalorimetric evidence of hydrophobic interactions between hydrophobically modified cationic polysaccharides and surfactants of the same charge. J Phys Chem B. 2007;111:11453–62.

    Article  CAS  Google Scholar 

  51. Bai G, Gonçalves C, Gama FM, Bastos M. Self-aggregation of hydrophobically modified dextrin and their interaction with surfactant. Thermochim Acta. 2008;467:54–62.

    Article  CAS  Google Scholar 

  52. Lindman B, Thalberg K. Polymer—surfactant interactions—recent developments. In: Goddard DE, Ananthapadmanabhan KP, editors. Interactions of surfactants with polymers and proteins. Boca Raton: CRC Press; 1993. p. 203.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to FCT for financial support to CIQ(UP), Unidade de Investigação 81, and for a Post-Doc grant to G.B (SFRH/BPD/41407/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Bastos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, G., Castro, V., Nichifor, M. et al. Calorimetric study of the interactions between surfactants and dextran modified with deoxycholic acid. J Therm Anal Calorim 100, 413–422 (2010). https://doi.org/10.1007/s10973-009-0656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0656-5

Keywords

Navigation