Skip to main content
Log in

Thermoanalytical and structural characterization of fluoridated calcium phosphates prepared in anhydrous alcohols

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermoanalytical, morphological, and structural study of fluoridated calcium phosphates that were prepared by different variants of a synthesis in anhydrous alcohols is reported. The obtained materials were neither fully amorphous nor single-phased crystalline, and their nature considerably depended on the synthesis conditions. In all cases, the retention of significant amounts of solvent in the solid product was observed. A complete removal of the solvent was only possible by heating to temperatures above ~573–673 K which resulted in variations in the elemental composition, phase changes, and an increase of the crystallinity. Consequently, this synthesis in anhydrous alcohols is not a viable route to obtain materials with a defined crystallinity and stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. LeGeros RZ. Biological and synthetic apatites. In: Brown PW, Constantz B, editors. Hydroxyapatite and related materials. Boca Raton: CRC Press; 1994.

    Google Scholar 

  2. Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam: Elsevier; 1994. p. 208.

    Google Scholar 

  3. Baeuerlein E. Biomineralization. Progress in biology, molecular biology and application. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  4. Epple M, Baeuerlein E. Biomineralisation: medical and clinical aspects. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  5. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  6. Salinas AJ, Vallet-Regi M. Evolution of ceramics with medical applications. Z Anorg Allg Chem. 2007;633:1762–73.

    Article  CAS  Google Scholar 

  7. Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1–31.

    Article  CAS  Google Scholar 

  8. Kenny SM, Buggy M. Bone cements and fillers: a review. J Mater Sci Mater Med. 2003;14:923–38.

    Article  CAS  Google Scholar 

  9. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  CAS  Google Scholar 

  10. Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng C. 2005;25:131–43.

    Article  Google Scholar 

  11. Rey C, Combes C, Drouet C, Sfihi H, Barroug A. Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C. 2007;27:198–205.

    Article  CAS  Google Scholar 

  12. Horvath AL. Solubility of structurally complicated materials: II. bone. J Phys Chem Ref Data. 2006;35:1653–69.

    Article  CAS  Google Scholar 

  13. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361:131–8.

    Article  CAS  Google Scholar 

  14. Moller IJ, Melsen B, Jensen SJ, Kirkegaard E. A histological, chemical and X-ray diffraction study on contemporary (Carcharias glaucus) and fossilized (Macrota odontaspis) shark teeth. Arch Oral Biol. 1975;20:797–802.

    Article  CAS  Google Scholar 

  15. Daclusi G, Kerebel LM. Ultrastructural study and comparative analysis of fluoride content of enameloid in sea-water and fresh-water sharks. Arch Oral Biol. 1980;25:145–51.

    Article  Google Scholar 

  16. Jha LJ, Best SM, Knowles JC, Rehman I, Santos JD, Bonfield W. Preparation and characterization of fluoride-substituted apatites. J Mater Sci Mater Med. 1997;8:185–91.

    Article  CAS  Google Scholar 

  17. Manjubala I, Sivakumar M, Nikkath SN. Synthesis and characterisation of hydroxy/fluoroapatite solid solution. J Mater Sci. 2001;36:5481–6.

    Article  CAS  Google Scholar 

  18. Rodriguez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials. 2003;24:3777–85.

    Article  CAS  Google Scholar 

  19. Gross KA, Rodriguez-Lorenzo LM. Sintered hydroxyfluorapatites. Part I: sintering ability of precipitated solid solution powders. Biomaterials. 2004;25:1375–84.

    Article  CAS  Google Scholar 

  20. Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite–gelatine composites. Chem Mater. 2001;13:3260–71.

    Article  CAS  Google Scholar 

  21. Prymak O, Sokolova V, Peitsch T, Epple M. The crystallization of fluoroapatite dumbbells from supersaturated aqueous solution. Cryst Growth Des. 2006;6:498–506.

    Article  CAS  Google Scholar 

  22. Bartlett JD, Dwyer SE, Beniash E, Skobe Z, Payne-Ferreira TL. Fluorosis: a new model and new insights. J Dent Res. 2005;84:832–6.

    Article  CAS  Google Scholar 

  23. ten Cate JM, Duijsters PPE. Influence of Fluoride in solution on tooth demineralization. 2. Microradiographic data. Chemical-data. Caries Res. 1983;17:513.

    Article  Google Scholar 

  24. Cate JM, Duijsters PPE. Influence of Fluoride in solution on tooth demineralization. 1. Chemical-data. Caries Res. 1983;17:193–9.

    Article  Google Scholar 

  25. Ögaard B, Rolla G, Ruben J, Dijkman T, Arends J. Microradiographic study of demineralization of shark enamel in human caries model. Scand J Dent Res. 1988;96:209–11.

    Google Scholar 

  26. Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites. Biomaterials. 2002;23:2553–9.

    Article  CAS  Google Scholar 

  27. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  CAS  Google Scholar 

  28. Layrolle P, Lebugle A. Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol. Chem Mater. 1994;6:1996–2004.

    Article  CAS  Google Scholar 

  29. Layrolle P, Lebugle A. Synthesis in pure ethanol and characterization of nanosized calcium phosphate fluoroapatite. Chem Mater. 1996;8:134–44.

    Article  CAS  Google Scholar 

  30. Duff EJ, Stuart JL. Determination of fluoride in calcium phosphates with a fluoride-selective electrode. Anal Chim Acta. 1970;52:155–7.

    Article  CAS  Google Scholar 

  31. Monma H. Catalytic behavior of calcium phosphates for decompositions of 2-propanol and ethanol. J Catal. 1982;75:200–3.

    Article  CAS  Google Scholar 

  32. DIFFRACplus EVA 11.0.0.3. Karlsruhe: Bruker AXS; 1996–2005.

  33. FIZ/NIST Inorganic Crystal Structure Database (ICSD), NIST Standard Reference Database 84. Gaithersburg: National Institute of Standards and Technology; 2006.

  34. Wikholm NW, Beebe RA, Kittelberger JS. Kinetics of the conversion of monetite to calcium pyrophosphate. J Phys Chem. 1975;79:853–6.

    Article  CAS  Google Scholar 

  35. Dongare MK, Sinha APB. Thermal analysis of some metal alkoxides. Thermochim Acta. 1982;57:37–45.

    Article  CAS  Google Scholar 

  36. Klee WE, Engel G. I.R. spectra of the phosphate ions in various apatites. J Inorg Nucl Chem. 1970;32:1837–43.

    Article  CAS  Google Scholar 

  37. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

    Article  CAS  Google Scholar 

  38. Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E. Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med. 1997;8:271–6.

    Article  CAS  Google Scholar 

  39. Berry EE. The structure and composition of some calcium-deficient apatites. J Inorg Nucl Chem. 1967;29:317–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) and the CRUP (Portugal; A-31/09)/DAAD (Germany) bilateral exchange program. PhD and Post Doctoral grants from FCT are also gratefully acknowledged by R.G.S. (SFRH/BD/48410/2008) and A.L.C.L. (SFRH/BPD/35053/2007), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel E. Minas da Piedade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simões, R.G., Aleixo, A.I., Lagoa, A.L.C. et al. Thermoanalytical and structural characterization of fluoridated calcium phosphates prepared in anhydrous alcohols. J Therm Anal Calorim 100, 509–517 (2010). https://doi.org/10.1007/s10973-009-0654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0654-7

Keywords

Navigation