Skip to main content
Log in

Mesophase formation and thermal behavior of catanionic mixtures of gemini surfactants with sodium alkylsulfates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior for three homologous series of cationic geminis surfactants of the type n-2-n, alkanediyl-α,ω-bis(alkyldimethylammonium bromide), with n = 12, 14, 16, and 18, and sodium alkyl sulfates, SC m S, with m = 12, 14, and 16, is reported here. The cationic/anionic molar ratio is kept at 1:2 (equicharged mixtures), and salt is also present. Polarizing light microscopy and differential scanning calorimetry show a stepwise fusion for the mixtures with appearance of several mesophases between the crystalline structures and the isotropic liquid. A main endothermic transition is observed, associated with partial chain melting and consequent loss of crystalline order, followed by a transition to a smectic liquid crystal. The phase transition thermodynamics is interpreted in terms of an interplay between van der Waals chain–chain interactions and ionic head group interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Collings PJ, Hird M. Introduction to liquid crystals. London: Taylor & Francis; 1997.

    Book  Google Scholar 

  2. Tandon P, Neubert R, Wartewig S. Thermotropic phase behaviour of sodium oleate as studied by FT-Raman spectroscopy and X-ray diffraction. J Mol Struct. 2009;526:49–57.

    Article  Google Scholar 

  3. Akanni MS, Okoh EK, Burrows HD, Ellis HA. The thermal behaviour of divalent and higher valent metal soaps: a review. Thermochim Acta. 1992;208:1–47.

    Article  CAS  Google Scholar 

  4. Mathevet F, Masson P, Nicoud JF, Skoulios A. Smectic liquid crystals from supramolecular guanidinium alkylbenzenesulfonates. Chem Eur J. 2002;8:2248–54.

    Article  CAS  Google Scholar 

  5. Knight GA, Shaw BD. Long-chain alkylpyridines and their derivatives. New examples of liquid crystals. J Chem Soc. 1938;1:682–3.

    Article  Google Scholar 

  6. Stella I, Müller A. Mesomorphic behaviour of N-(n-alkyl) pyridinium hydrogensulfates. Colloids Surf A: Physicochem Eng Aspects. 1999;147:371–4.

    Article  CAS  Google Scholar 

  7. Al-Ali F, Brun A, Rodrigues F, Etemad-Moghadam G, Rico-Lattes I. New catanionic amphiphiles derived from the associative systems (α-hydroxyalkyl)-phosphinic or (α-hydroxyalkyl)-phosphonic acid/cetyltrimethylammonium hydroxide. preparation, characterization, and self-organization properties. Langmuir. 2003;19:6678–84.

    Article  CAS  Google Scholar 

  8. Fischer E, Helfrich B. Über neue synthetische glucoside. Ann Chem. 1911;383:68–91.

    CAS  Google Scholar 

  9. Galema SA, Engberts JBFN, van Doren HA. Synthesis, purification and liquid-crystalline behaviour of several alkyl 1-thio- D-glycopyranosides. Carbohydr Res. 1997;303:423–34.

    Article  CAS  Google Scholar 

  10. Van Doren HA, van der Geest R, Kellogg RM, Wynberg H. Synthesis and liquid crystalline properties of the n-alkyl 1-thio-α-glucopyranosides, a new homologous series of carbohydrate mesogens. Carbohydr Res. 1989;194:71–7.

    Article  Google Scholar 

  11. Borisch K, Diele S, Goèring P, Muèller H, Tschierske C. Amphiphilic N-benzoyl-1-amino-1-deoxy-D-glucitol derivatives forming thermotropic lamellar, columnar and different types of cubic mesophases. Liq Cryst. 1997;22:427–43.

    Article  CAS  Google Scholar 

  12. Wang Y, Marques EF. Thermotropic phase behavior of cationic gemini surfactants and their equicharge mixtures with sodium dodecyl sulfate. J Phys Chem B. 2006;110:1151–7.

    Article  CAS  Google Scholar 

  13. McClure DW. Nature of the rotational phase transition in paraffin crystals. J Chem Phys. 1968;49:1830–9.

    Article  CAS  Google Scholar 

  14. Strobl G, Ewen B, Fisher EW, Piesczek W. Defect structure and molecular motion in the four modifications of n-tritriacontane. I. Study of defect structure in the lamellar interfaces using small angle X-ray scattering. J Chem Phys. 1974;61:5257–64.

    Article  Google Scholar 

  15. Ewen B, Fisher EW, Piesczek W, Strobl GJ. Defect structure and molecular motion in the four modifications of n-tritriacontane. II. Study of molecular motion using infrared spectroscopy and wide-line nuclear magnetic resonance measurements. J Chem Phys. 1974;61:5265–72.

    Article  CAS  Google Scholar 

  16. Zerbi G, Magni R, Gussoni M, Moritz KH, Bigotto A, Dirlikov S. Molecular mechanics for phase transition and melting of n-alkanes: a spectroscopic study of molecular mobility of solid n-nonadecane. J Chem Phys. 1981;75:3175–80.

    Article  CAS  Google Scholar 

  17. Doucet J, Denicolo I, Craievich A. X-ray study of the ``rotator’’ phase of the odd-numbered paraffins C17H36, C19H40, and C21H44. J Chem Phys. 1981;75:1523–9.

    Article  CAS  Google Scholar 

  18. Jeffrey GA, Wingert LM. Carbohydrate liquid crystals. Liq Cryst. 1992;12:179–202.

    Article  CAS  Google Scholar 

  19. Vacatello M, Avitabile G, Corradini P, Tuzi A. A computer model of molecular arrangement in a n-paraffinic liquid. J Chem Phys. 1980;73:548–52.

    Article  CAS  Google Scholar 

  20. Vacatello M, Busico V, Corradini P. The conformation of hydrocarbon chains in disordered layer systems. J Chem Phys. 1983;78:590–1.

    Article  CAS  Google Scholar 

  21. Van der Ploeg P, Berendsen HJC. Molecular dynamics simulation of a bilayer membrane. J Chem Phys. 1982;76:3271–6.

    Article  Google Scholar 

  22. Nagle JF. Theory of the main lipid bilayer phase transition. Annu Rev Phys Chem. 1980;31:157–96.

    Article  CAS  Google Scholar 

  23. Bell GM, Combs L, Dunne L. Theory of cooperative phenomena in lipid systems. J Chem Rev. 1981;81:15–48.

    Article  CAS  Google Scholar 

  24. Prade H, Miethchen R, Vill V. Thermotrop flüssigkristalline Kohlenhydrat-Amphiphile. J Prakt Chem. 1995;337:427–40.

    Article  CAS  Google Scholar 

  25. Vill V, Böcker T, Thiem J, Fischer F. Studies on liquid-crystalline glycosides. Liq Cryst. 1989;6:349–56.

    Article  CAS  Google Scholar 

  26. Small DM (1986) Handbook of lipid research. vol. 4. New York and London: Plenum Press; Appendix VI Phospholipids, p. 627.

  27. Pinazo A, Pérez L, Lozano M, Angelet M, Infante MR, Vinardell MP, et al. Aggregation properties of diacyl lysine surfactant compounds: hydrophobic chain length and counterion effect. J Phys Chem B. 2008;112:8578–85.

    Article  CAS  Google Scholar 

  28. Brito RO, Marques EF, Gomes P, Araújo MJ, Pons R. Structure/property relationships for the thermotropic behavior of lysine-based amphiphiles: from hexagonal to smectic phases. J Phys Chem B. 2008;112:14877–87.

    Article  CAS  Google Scholar 

  29. Morán MC, Pinazo A, Clapés P, Pérez L, Infante MR, Pons R. Investigation of the thermotropic behavior of isomer mixtures of diacyl arginine-based surfactants. Comparison of polarized light microscopy, DSC, and SAXS observations. J Phys Chem B. 2004;108:11080–8.

    Article  Google Scholar 

  30. Drummond CJ, Wells D. Nonionic lactose and lactitol based surfactants: comparison of some physico-chemical properties. Colloids Surf A: Physicochem Eng Aspects. 1998;141:131–42.

    Article  CAS  Google Scholar 

  31. Wunderlich B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim Acta. 1999;340–341:37–52.

    Article  Google Scholar 

  32. Silva BFB, Marques EF. Thermotropic behavior of asymmetric chain length catanionic surfactants: The influence of the polar head group. J Colloid Interface Sci. 2005;290:267–74.

    Article  CAS  Google Scholar 

  33. Filipovic-Vincekovic N, Pucic I, Popovic S, Tomašic V, Tezak D. Solid-phase transitions of catanionic surfactants. J Colloid Interface Sci. 1997;188:396–403.

    Article  CAS  Google Scholar 

  34. Tomasic V, Popovic S, Filipovic-Vincekovic N. Solid state transitions of asymmetric catanionic surfactants. J Colloid Interface Sci. 1999;215:280–9.

    Article  CAS  Google Scholar 

  35. Menger FM, Mbadugha BNA. Gemini surfactants with a disaccharide spacer. J Am Chem Soc. 2001;123:875–85.

    Article  CAS  Google Scholar 

  36. Ryhänen SJ, Pakkanen AL, Säily MJ, Bello C, Mancini G, Kinnunen PKJ. Impact of the stereochemical structure on the thermal phase behavior of a cationic gemini surfactant. J Phys Chem B. 2002;106:11694–8.

    Article  Google Scholar 

  37. Oliviero C, Coppola L, Mesa CL, Ranieri GA, Terenzi M. Gemini surfactant–water mixtures: some physical–chemical properties. Colloids Surf A: Physicochem Eng Aspects. 2002;201:247–60.

    Article  CAS  Google Scholar 

  38. Zana R. Alkanediyl-α, ω-bis(dimethylalkylammonium bromide) surfactants: II. Krafft temperature and melting temperature. J Colloid Interface Sci. 2002;252:259–61.

    Article  CAS  Google Scholar 

  39. Alami E, Beinert G, Marie P, Zana R. Alkanediyl-.alpha, omega-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air–water interface. Langmuir. 1993;9:1465–7.

    Article  CAS  Google Scholar 

  40. Alami E, Levy H, Zana R, Skoulios A. Alkanediyl-alpha, omega-bis(dimethylalkylammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water. Langmuir. 1993;9:940–4.

    Article  CAS  Google Scholar 

  41. Fuller S, Shinde NN, Tiddy GJT, Attard GS, Howell O. Thermotropic and lyotropic mesophase behavior of amphitropic diammonium surfactants. Langmuir. 1996;12:1117–23.

    Article  CAS  Google Scholar 

  42. Sikirić M, Šmit I, Tušek-Božić L, Tomaši V, Pucić I, Primožč I, et al. Effect of the spacer length on the solid phase transitions of dissymmetric gemini surfactants. Langmuir. 2003;19:10044–53.

    Article  Google Scholar 

  43. Menger FM, Littau CA. Gemini-surfactants: synthesis and properties. J Am Chem Soc. 1991;113:1451–2.

    Article  CAS  Google Scholar 

  44. Dierking I. Textures of liquid crystals. Weinheim: Wiley-VCH; 2003.

    Book  Google Scholar 

  45. Demus D, Kölz KH, Sackmann HZ. Isomorphic relations between crystal-liquid phases. 17. Polymorphism of crystal-liquid states of dialkyl para terphenyl-4,4”-dicarboxylate – smectic E modifications. Z Phys Chem. 1973;252:93–112.

    CAS  Google Scholar 

  46. Demus D, Diele S, Klapperstück M, Link V, Zaschke H. Investigation of a smectic tetramorphous substance. Mol Cryst Liq Cryst. 1971;15:161–74.

    Article  CAS  Google Scholar 

  47. Gray GW, Goodby JW. Smectic liquid crystals—textures and structures. Glasgow: Leonard Hill; 1984.

    Google Scholar 

  48. Sackmann H, Demus D. The problems of polymorphism in liquid crystals. Mol Cryst Liq Cryst. 1973;21:239–73.

    Article  CAS  Google Scholar 

  49. Levine IN. Physical chemistry. 5th ed. New York: MC-Graw Hill; 2007.

    Google Scholar 

  50. Wang YJ, Pereira CM, Marques EF, Brito RO, Ferreira ES, Silva F. Catanionic surfactant films at the air–water interface. Thin Solid Films. 2006;515:2031–7.

    Article  CAS  Google Scholar 

  51. Wang Y, Marques EF, Pereira CM. Monolayers of Gemini surfactants and their catanionic mixtures with sodium dodecyl sulfate at the air water interface: chain length and composition effects. Thin Solid Films. 2008;516:7458–66.

    Article  CAS  Google Scholar 

  52. Marques EF, Brito RO, Wang Y, Silva BFB. Thermotropic phase behavior of triple-chained surfactants with varying headgroup chemistry. J Colloid Interface Sci. 2006;294:240–7.

    Article  CAS  Google Scholar 

  53. Seurin P, Guillon D, Skoulios A. Smectogènes dissymétriques III. Syhthèse et propriétés mésomorphes des p, n-alkoxybenzydèneanilines parasubstituées. Mol Cryst Liq Cryst. 1981;65:85–110.

    Article  CAS  Google Scholar 

  54. Marques EF, Burrows HD, Miguel MG. The structure and thermal behavior of some long chain cerium(III) carboxilates. J Chem Soc Faraday Trans. 1998;94:1729–1736

    Google Scholar 

Download references

Acknowledgements

We kindly acknowledge financial support from Fundação para a Ciência e Tecnologia (F.C.T.), Portugal, through CIQ(UP) L5. Y.W. also acknowledges F.C.T. for the post-doc grant BPD SFRH/BPD/6979/2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Marques, E.F. Mesophase formation and thermal behavior of catanionic mixtures of gemini surfactants with sodium alkylsulfates. J Therm Anal Calorim 100, 501–508 (2010). https://doi.org/10.1007/s10973-009-0653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0653-8

Keywords

Navigation