Skip to main content
Log in

Energetics of lead(II), cadmium(II) and zinc(II) complexes with amino acids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacity and the standard (p 0 = 0.1 MPa) molar enthalpies of formation of the crystalline of bis(glycinate)lead(II), Pb(gly)2; bis(dl-alaninate)lead(II), Pb(dl-ala)2; bis(dl-valinate)lead(II), Pb(dl-val)2; bis(dl-valinate)cadmium(II), Cd(dl-val)2 and bis(dl-valinate)zinc(II), Zn(dl-val)2, were determined, at T = 298.15 K, by differential scanning calorimetry, and high precision solution-reaction calorimetry, respectively. The standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar metal–ligand dissociation enthalpies, M(II)–amino acid, \( \langle D_{\text{m}} \rangle \)(M–L), were derived and compared with analogous copper(II)–ligand and nickel(II)–ligand.θθ

M(II)–amino acid

\( \Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \)(cr)/kJ mol−1

Bis(glycinate)lead(II), Pb(gly)2

−998.9 ± 1.9

Bis(dl-alaninate)lead(II), Pb(ala)2

−1048.7 ± 1.8

Bis(dl-valinate)lead(II), Pb(val)2

−1166.3 ± 2.5

Bis(dl-valinate)cadmium(II), Cd(val)2

−1243.7 ± 2.7

Bis(dl-valinate)zinc(II), Zn(val)2

−1306.1 ± 2.3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vigato PA, Tamburini S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord Chem Rev. 2004;248:1717–2128.

    Article  CAS  Google Scholar 

  2. Ganguly R, Sreenivasulu B, Vittal JJ. Amino acid containing reduced Schuff bases as the building blocks for metallasupramolecular structures. Coord Chem Rev. 2008;252:1027–50.

    Article  CAS  Google Scholar 

  3. Finney LA, O’ Halloran TV. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science. 2003;300:931–6.

    Article  CAS  Google Scholar 

  4. Berg BJ, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996;271:1081–5.

    Article  CAS  Google Scholar 

  5. Frauscher G, Karnaukhova E, Muehl A, Hoeger H, Lubec B. Oral administration of homocysteine leads to increased plasma triglycerides and homocysteic acid—additional mechanisms in homocysteine induced endothelial damage? Life Sci. 1995;57:813–7.

    Article  CAS  Google Scholar 

  6. Chohan ZH, Arif M, Sarfraz M. Metal-based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity. Appl Organometal Chem. 2007;21:294–302.

    Article  CAS  Google Scholar 

  7. Rauser WE. Structure and function of metal chelators produced by plants. The case of organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys. 1999;31:19–48.

    Article  CAS  Google Scholar 

  8. Martin RB. Complexes of α-amino acids with chelatable side chain donor atoms. In: Sigel H, editor. Metal ions in biological systems, vol. 9. New York: Marcel; 1979.

    Google Scholar 

  9. Polfer NC, Oomens J, Moore DT, von Helden G, Meijer G, Dunbar RC. Infrared spectroscopy of phenylalanine Ag(I) and Zn(II) complexes in the gas phase. J Am Chem Soc. 2009;128:517–25.

    Article  Google Scholar 

  10. Ashcroft SJ, Mortimer CT. Thermochemistry of transition metal complexes. London: Academic Press; 1970.

    Google Scholar 

  11. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Bernardo MMC, Santos LMNBF. Thermochemistry of some metallic aminoacid complexes. Part I copper(II) complexes. Thermochim Acta. 1992;205:99–113.

    Article  CAS  Google Scholar 

  12. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Tuna JABA, Santos LMNFS. Thermochemistry of some metallic aminoacid complexes. Part II nickel(II) complexes. Thermochim Acta. 1992;205:115–25.

    Article  CAS  Google Scholar 

  13. Flaschka HA. EDTA titrations. London: Pergamon; 1959.

    Google Scholar 

  14. Gunn SR. On the calculation of the correct temperature rise in isoperibol calorimetry. Modifications of the Dickinson extrapolation method and treatment of thermistor thermometer resistance values. J Chem Thermodyn. 1971;3:19–34.

    Article  Google Scholar 

  15. Santos LMNBF. PhD Thesis. University of Porto; 1995.

  16. Irving RJ, Wadsö I. Use of tris(hydroxymethyl)aminomethane as a test substance in reaction calorimetry. Acta Chem Scand. 1964;18:195–201.

    Article  CAS  Google Scholar 

  17. Sabbah R, An X, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  18. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  19. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry, vol. 1, chapter 14. New York: Interscience; 1956.

  20. Della Gatta G, Richardson M, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC Technical Report). Pure Appl Chem. 2006;78:1455–76.

    Article  CAS  Google Scholar 

  21. Barros TMVR, Santos RC, Fernandes AC, Piedade MEM. Accuracy and precision of heat capacity measurements using a heat flux differential scanning calorimeter. Thermochim Acta. 1995;269:51–60.

    Article  Google Scholar 

  22. Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin: Springer-Verlag; 2003.

    Google Scholar 

  23. Steele WV, Chirico RD, Knipmeyer SE, Nguyen A. The thermodynamic properties of thianthrene and phenoxathiin. J Chem Thermodyn. 1993;25:965–92.

    Article  CAS  Google Scholar 

  24. Wagman DD, Evans WH, Parker VB, Shum RH, Halow F, Bailey SM, Churney Kl, Nuttall RL. NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data. 1982;11(Suppl 2):1–392.

    Google Scholar 

  25. Ribeiro da Silva MAV, Santos LMNBF. Standard molar enthalpies of formation of Ni(CH3COO)2, Ni(CH3COO)2·4.00H2O, Cd(CH3COO)2, and Cd(CH3COO)2·2.00H2O in the crystalline state. J Chem Thermodyn. 2000;32:1327–34.

    Article  CAS  Google Scholar 

  26. Pedley JB. Thermochemical data and structures of organic compounds. Thermodynamics Research Center, College Station: CRC Press; 1994.

    Google Scholar 

  27. de Kruif CG, Voogd J, Offringa JCA. Enthalpies of sublimation and vapour pressures of 14 amino acids and peptides. J Chem Thermodyn. 1979;11:651–6.

    Article  Google Scholar 

  28. Kamaguchi A, Sato T, Sakiyama M, Seki S. Enthalpies of combustion of organic compounds. III. d-, l- and dl-alanines. Bull Chem Soc Jpn. 1975;48:3749–50.

    Article  CAS  Google Scholar 

  29. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Santos LMNBF. Standard molar enthalpies of formation of crystalline l-, d- and dl-valines. J Chem Thermodyn. 2000;32:1037–43.

    Article  CAS  Google Scholar 

  30. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere; 1989.

    Google Scholar 

  31. Badelin VG, Kulikov OV, Batagin VS, Udzig E, Zielenkiewicz A, Zielenkiewicz W, et al. Physico-chemical properties of peptides and their solutions. Thermochim Acta. 1990;169:81–93.

    Article  CAS  Google Scholar 

  32. Ribeiro da Silva MAV. Energetics of metal–ligand bonds. New J Chem. 1997;21:671–80.

    Google Scholar 

  33. Ribeiro da Silva MAV, Ferrão MLCCH. Energetics of metal–oxygen bonds in metal complexes of ß-diketones. Pure Appl Chem. 1988;60:1225–34.

    Article  CAS  Google Scholar 

  34. Ribeiro da Silva MAV. Thermochemistry of β-diketones and metal-β-diketonates. Metal–oxygen bond enthalpies. In: Ribeiro da Silva MAV, editor. Thermochemistry and its applications to chemical and biochemical systems. NATO ASI Series, vol. 119. Dordrecht: D. Reidel Publishing; 1984.

    Google Scholar 

Download references

Acknowledgements

Thanks are due to FCT (Fundação para a Ciência e Tecnologia), Lisboa, Portugal and to FEDER for financial support granted to Centro de Investigação em Química da Universidade do Porto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. V. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro da Silva, M.A.V., Santos, L.M.N.B.F., Faria, A.C.P. et al. Energetics of lead(II), cadmium(II) and zinc(II) complexes with amino acids. J Therm Anal Calorim 100, 475–482 (2010). https://doi.org/10.1007/s10973-009-0650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0650-y

Keywords

Navigation