Skip to main content
Log in

Thermochemistry of hydroxymethylphenol isomers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The standard (p° = 0.1 MPa) molar enthalpies of formation in the crystalline state of the 2-, 3- and 4-hydroxymethylphenols, \( {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = \, - ( 3 7 7. 7 \pm 1. 4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} \), \( {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr) }} = - (383.0 \pm 1.4) \, \,{\text{kJ}}\,{\text{mol}}^{ - 1} \) and \( {{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{cr)}} = - (382.7 \pm 1.4)\,{\text{kJ}}\,{\text{mol}}^{ - 1} \), respectively, were derived from the standard molar energies of combustion, in oxygen, to yield CO2(g) and H2O(l), at T = 298.15 K, measured by static bomb combustion calorimetry. The Knudsen mass-loss effusion technique was used to measure the dependence of the vapour pressure of the solid isomers of hydroxymethylphenol with the temperature, from which the standard molar enthalpies of sublimation were derived using the Clausius–Clapeyron equation. The results were as follows: \( \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (99.5 \pm 1.5)\,{\text{kJ}}\,{\text{mol}}^{ - 1} \), \( \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (116.0 \pm 3.7) \,{\text{kJ}}\,{\text{mol}}^{ - 1} \) and \( \Updelta_{\rm cr}^{\rm g} H_{\rm m}^{\rm o} = (129.3 \pm 4.7)\,{\text{ kJ mol}}^{ - 1} \), for 2-, 3- and 4-hydroxymethylphenol, respectively. From these values, the standard molar enthalpies of formation of the title compounds in their gaseous phases, at T = 298.15 K, were derived and interpreted in terms of molecular structure. Moreover, using estimated values for the heat capacity differences between the gas and the crystal phases, the standard (p° = 0.1 MPa) molar enthalpies, entropies and Gibbs energies of sublimation, at T = 298.15 K, were derived for the three hydroxymethylphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rappoport Z. (ed). The chemistry of phenols. England: Wiley; 2003.

  2. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001;49:5165–70.

    Article  CAS  Google Scholar 

  3. Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102:777–83.

    Article  CAS  Google Scholar 

  4. Ribeiro da Silva MDMC, Matos MAR, Ferrão MLCCH, Amaral LMPF, Miranda MS, Acree WE Jr, Pilcher G. Enthalpies of combustion of 2-iodosobenzoic acid and 4-nitrosophenol: the dissociation enthalpy of the I–O bond. J Chem Thermodyn. 1999;31:1551–9.

    Article  CAS  Google Scholar 

  5. Ribeiro da Silva MAV, Matos MAR, Morais VMF, Miranda MS. Thermochemical and theoretical study of tert-butyl and di-tert-butylphenol isomers. J Org Chem. 1999;64:8816–20.

    Article  CAS  Google Scholar 

  6. Ribeiro da Silva MAV, Matos MAR, Miranda MS, Sousa MHFA, Santos RMB, Bizarro MM, Martinho Simões JA. Standard enthalpies of formation of 2,6-di-tert-butyl-4-methylphenol and 3,5-di-tert-butylphenol and their phenoxy radicals. Struct Chem. 2001;12:171–81.

    Article  CAS  Google Scholar 

  7. Matos MAR, Miranda MS, Morais VMF. Thermochemical study of the cyanophenol isomers. Struct Chem. 2004;15:103–16.

    Article  CAS  Google Scholar 

  8. Matos MAR, Miranda MS, Morais VMF. Thermochemical study of the methoxy- and dimethoxyphenol isomers. J Chem Eng Data. 2003;48:669–79.

    Article  CAS  Google Scholar 

  9. Matos MAR, Miranda MS, Morais VMF. 3,4,5-Trimethoxyphenol: a combined experimental and theoretical thermochemical investigation of its antioxidant capacity. J Chem Thermodyn. 2008;40:625–31.

    Article  CAS  Google Scholar 

  10. Miranda MS, Morais VMF, Matos MAR. Standard molar enthalpies of formation of the methoxynitrophenol isomers: a combined experimental and theoretical investigation. J Chem Thermodyn. 2004;36:431–6.

    Article  CAS  Google Scholar 

  11. Cox JD, Gundry HA, Harrop D, Head AJ. Thermodynamic properties of fluorine compounds 9. Enthalpies of formation of some compounds containing the pentafluorophenyl group. J Chem Thermodyn. 1969;1:77–87.

    Article  CAS  Google Scholar 

  12. Sinke GC, Stull DR. Heats of combustion of some organic compounds containing chlorine. J Phys Chem. 1958;62:397–401.

    Article  CAS  Google Scholar 

  13. Morais VMF, Miranda MS, Matos MAR. Thermochemical parameters of the chloronitrophenol isomers: a combined experimental and theoretical investigation. J Chem Eng Data. 2007;52:627–34.

    Article  CAS  Google Scholar 

  14. Gomes JRB, Liebman JF, Ribeiro da Silva MAV. The thermodynamics of the isomerization of cyanophenol and cyanothiophenol compounds. Struct Chem. 2007;18:15–23.

    Article  CAS  Google Scholar 

  15. Ribeiro da Silva MAV, Ferrão MLCCH, Jiye F. Standard enthalpies of combustion of the six dichlorophenols by rotating-bomb calorimetry. J Chem Thermodyn. 1994;26:839–46.

    Article  CAS  Google Scholar 

  16. Gomes JRB, Ribeiro da Silva MAV. Gas-phase thermodynamic properties of dichlorophenols determined from density functional theory calculations. J Phys Chem A. 2003;107:869–74.

    Article  CAS  Google Scholar 

  17. Ribeiro da Silva MAV, Lobo Ferreira AIMC. Experimental and computational thermochemical study of the three monofluorophenol isomers. J Chem Eng Data; 2009. doi:10.1021/je9000872.

  18. Kałdkowskia B, Hetper J. Synthesis of phenol–formaldehyde resole resins in the presence of tetraalkylammonium hydroxides as catalysts. Polymer. 2000;41:1679–84.

    Article  Google Scholar 

  19. Higuchi M, Urakawa T, Morita M. Condensation reactions of phenolic resins. 1. Kinetics and mechanisms of the base-catalyzed self-condensation of 2-hydroxymethylphenol. Polymer. 2001;42:4563–7.

    Article  CAS  Google Scholar 

  20. Sprung MM, Gladstone MT. A study of some condensations of o-methylolphenol. J Am Chem Soc. 1949;71:2907–13.

    Article  CAS  Google Scholar 

  21. Hirschfelder AD, Lundhoh A, Norrgaard H. The local anaesthetic actions of saligenin and other phenyl carbinols. J Pharmacol. 1920;15:261–70.

    CAS  Google Scholar 

  22. Hart MC, Hirschfelder AD. Some derivatives of saligenin. J Am Chem Soc. 1921;43:1688–93.

    Article  CAS  Google Scholar 

  23. Singh V, Vedantham P, Sahu PK. A novel stereoselective total synthesis of (±)-hirsutene from saligenin. Tetrahedron Lett. 2002;43:519–22.

    Article  CAS  Google Scholar 

  24. Nozoe S, Furukawa J, Sankawa U, Shibata S. Isolation, structure and synthesis of hirsutene, a precursor hydrocarbon of coriolin biosynthesis. Tetrahedron Lett. 1976;17:195–8.

    Article  Google Scholar 

  25. Glaser R. Aspirin. An ab initio quantum-mechanical study of conformational preferences and of neighboring group interactions. J Org Chem. 2001;66:771–9.

    Article  CAS  Google Scholar 

  26. Kerr KA, Richardson JF, Eddy DD. ACA Abstr Papers (Winter) 1985;13:67.

    Google Scholar 

  27. Wieser ME. Atomic weights of the elements 2005 (IUPAC Technical Report). Pure Appl Chem. 2006;78:2051–66.

    Article  CAS  Google Scholar 

  28. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. The construction, calibration and use of a new high-precision static-bomb calorimeter. Rev Port Qu¡m. 1984;26:163–72.

    CAS  Google Scholar 

  29. Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Pilcher G. Enthalpies of combustion of 1,2-dihydroxybenzene and of six alkylsubstituted 1,2-dihydroxybenzenes. J Chem Thermodyn. 1984;16:1149–55.

    Article  CAS  Google Scholar 

  30. Coops J, Jessup RS, van Nes K. Calibration of calorimeters for reactions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. Chapter 3.

    Google Scholar 

  31. Snelson A, Skinner HA. The heats of combustion of the four isomeric butyl alcohols. Trans Faraday Soc. 1960;56:1776–83.

    Article  Google Scholar 

  32. Santos LMNBF. Ph.D. Thesis. University of Porto; 1995.

  33. Wagman DD, Evans WH, Parker VB, RH Shum, Halow F, Bailey SM, Churney KL, Nuttall RL. NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 1982;11(Suppl 2):2–12.

    Google Scholar 

  34. Washburn EW. Standard states for bomb calorimetry. J Res Nat Bur Stand (US). 1933;10:525–58.

    CAS  Google Scholar 

  35. Hubbard WN, Scott DW, Waddington G. Standard states and corrections for combustions in a bomb at constant volume. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. Chapter 5.

    Google Scholar 

  36. Ribeiro da Silva MAV, Monte MJ, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.

    Article  CAS  Google Scholar 

  37. Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere.

  38. Rossini FD. Assignment of uncertainties to thermochemical data. In: Rossini FD, editor. Experimental thermochemistry, vol. 1. New York: Interscience; 1956. Chapter 14.

    Google Scholar 

  39. Olofsson G. Assigment of uncertainties. In: Sunner S, Månsson M, editors. Combustion calorimetry. Oxford: Pergamon; 1979. Chapter 6.

    Google Scholar 

  40. Burkinshaw PM, Mortimer CT. Enthalpies of sublimation of transition metal complexes. J Chem Soc Dalton Trans 1984;75–7.

  41. Ribeiro da Silva MAV, Monte MJS, Matos MAR. Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of 8-hydroxyquinoline, 5-nitro-8-hydroxyquinoline, and 2-methyl-8-hydroxyquinoline. J Chem Thermodyn. 1989;21:159–66.

    Article  CAS  Google Scholar 

  42. Ribeiro da Silva MAV, Matos MAR, Monte MJS. Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of 2-hydroxyquinoline, 4-methyl-2-hydroxyquinoline, 4-hydroxyquinoline, and 2-methyl-4-hydroxyquinoline. J Chem Thermodyn. 1990;22:609–16.

    Article  CAS  Google Scholar 

  43. Ribeiro da Silva MAV, Monte MJS. Vapour pressures and enthalpies of sublimation of six halogen-substituted 8-hydroxyquinolines. J Chem Thermodyn. 1992;24:715–24.

    Article  CAS  Google Scholar 

  44. Ribeiro da Silva MAV, Monte MJS. Vapour pressures and standard molar enthalpies of sublimation of four crystalline β-diketones. J Chem Thermodyn. 1992;24:1219–28.

    Article  CAS  Google Scholar 

  45. Ribeiro da Silva MAV, Lima LMSS, Amaral LMPF, Ferreira AIMCL, Gomes JRB. Standard molar enthalpies of formation, vapour pressures, and enthalpies of sublimation of 2-chloro-4-nitroaniline and 2-chloro-5-nitroaniline. J Chem Thermodyn. 2003;35:1343–59.

    Article  CAS  Google Scholar 

  46. Ribeiro da Silva MAV, Lobo Ferreira AIMC, Lima LMSS, Sousa SMM. Thermochemistry of phenylacetic and monochlorophenylacetic acids. J Chem Thermodyn. 2008;40:137–45.

    Article  CAS  Google Scholar 

  47. Ribeiro da Silva MAV, Amaral LMPF. Standard molar enthalpies of formation of some vinylfuran derivatives. J Chem Thermodyn. 2009;41:349–54.

    Article  CAS  Google Scholar 

  48. Kopf PW, Wagner ER. Formation and cure of novolacs: NMR study of transient molecules. J Polym Sci Polym Chem Ed. 1973;11:939–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal and to FEDER for financial support to Centro de Investigação em Química, University of Porto. A.I.M.C.L.F. thanks FCT and the European Social Fund (ESF) under the Community Support Framework (CSF) for the award of the post-doctoral fellowship (SFRH/BPD/27053/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. V. Ribeiro da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro da Silva, M.A.V., Lobo Ferreira, A.I.M.C. Thermochemistry of hydroxymethylphenol isomers. J Therm Anal Calorim 100, 447–455 (2010). https://doi.org/10.1007/s10973-009-0647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0647-6

Keywords

Navigation