Skip to main content
Log in

Glass-forming ability of butanediol isomers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal behavior of butanediol isomers is investigated for temperatures ranging from 103 to 303 K using differential scanning calorimetry, complemented, when necessary, by polarized light thermal microscopy. The butanediol isomers display quite different thermal behaviors: for 1,2- and 1,3-isomers, glass transition is the only thermal event observed; for 1,4-butanediol, crystallization occurs on cooling even at a high scanning rate and no glass formation was detected; and for the 2,3-isomer, glass or crystal formation is dependent on the experimental conditions employed. The glass-forming ability of the isomers is correlated with data available on their molecular symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gräfje H, Körnig W, Weitz HM, Reiß W, Steffan G, Diehl H, et al. Butanediols, Butenediol, and Butynediol. In: Bailey JE, Brinker CJ, Cornils B, editors. Ullmann’s Encyclopedia of Industrial Chemistry (electronic release). 7th ed. Wiley-VCH: Weinheim; 2000.

    Google Scholar 

  2. Boutron P, Mehl P, Kaufmann A, Angibaud P. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons: I. Binary systems water-polyalcohol. Cryobiology. 1986;23:453–69.

    Article  CAS  Google Scholar 

  3. Mehl P, Boutron P. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons: II. Ternary systems with water, 1, 2-propanediol or 1, 3-butanediol or 2, 3-butanediol. Cryobiology. 1987;24:355–67.

    Article  CAS  Google Scholar 

  4. Boutron P. Levo- and dextro-2, 3-Butanediol and their racemic mixture: very efficient solutes for vitrification. Cryobiology. 1990;27:55–69.

    Article  CAS  Google Scholar 

  5. Boutron P. Cryoprotection of red blood cells by a 2, 3-butanediol containing mainly the levo and dextro isomers. Cryobiology. 1992;29:347–58.

    Article  CAS  Google Scholar 

  6. Boutron P, Mehl P. Theoretical prediction of devitrification tendency: Determination of critical warming rates without using finite expansions. Cryobiology. 1990;27:359–77.

    Article  CAS  Google Scholar 

  7. Sutton RL. Critical cooling rates to avoid ice crystallization in solutions of cryoprotective agents. J Chem Soc Faraday Trans. 1991;87:101–5.

    Article  CAS  Google Scholar 

  8. Boutron P. Glass-forming tendency and stability of the amorphous state in solutions of a 2, 3-butanediol containing mainly the levo and dextro isomers in water buffer and Euro-Collins. Cryobiology. 1993;30:86–97.

    Article  CAS  Google Scholar 

  9. Chirico RD, Knipmeyer SE, Steele WV. Heat capacities, enthalpy increments, and derived thermodynamic functions for benzophenone between the temperatures 5 K and 440 K. J Chem Thermodyn. 2002;34:1885–95.

    Article  CAS  Google Scholar 

  10. Sabbah R, Xu-Wu A, Chickos JS, Leitão MLP, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.

    Article  CAS  Google Scholar 

  11. Drake PW, Dill JF, Mumtrose CJ, Meister R. A study of viscoelastic properties of butanediol-1, 3 using optical digital correlation spectroscopy. J Chem Phys. 1977;67:1969–77.

    Article  CAS  Google Scholar 

  12. Mullin JW. Crystallization. 3rd ed. Oxford: Butterworth Heinemann; 1993.

    Google Scholar 

  13. Tamman G. States of Aggregation. New York: van Nostrand; 1925.

    Google Scholar 

  14. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.

    Article  CAS  Google Scholar 

  15. Kanno H. A simple derivation of the empirical rule: T G/T M = 2/3. J Non-Cryst Solids. 1981;44:409–13.

    Article  CAS  Google Scholar 

  16. Dudowicz J, Freed KJ, Douglas JF. The glass transition temperature of polymer melts. J Phys Chem B. 2005;109:21285–92.

    Article  CAS  Google Scholar 

  17. Wang LM, Angell CA, Richert R. Fragility and thermodynamics in nonpolymeric glass-forming liquids. J Chem Phys. 2006;125:74505.

    Article  Google Scholar 

  18. Zábranský M, Růžička V Jr. Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment. J Phys Chem Ref Data. 2004;33:1071–81.

    Article  Google Scholar 

  19. Origin. Scientific Graphing and Analysis Software. Version 7. Northampton: OriginLab Corporation; 2002.

  20. Nunes SCC, Eusébio ME, Leitão MLP, Redinha JS. Polymorphism of pindolol, 1-(1H-indol-4-yloxyl)-3-isopropylamino-propan-2-ol. Int J Pharm. 2004;285:13–21.

    Article  CAS  Google Scholar 

  21. Takeda K, Yamamuro O, Tsukushi I, Matsuo T, Suga H. Calorimetric study of ethylene glycol and 1, 3-propanediol: configurational entropy in supercooled polyalcohols. J Mol Struct. 1999;479:227–35.

    Article  CAS  Google Scholar 

  22. Takeda K, Murata K, Yamashita S. Thermodynamic investigation of glass transition in binary polyalcohols. J Non-Cryst Solids. 1998;213:273–9.

    Article  Google Scholar 

  23. Angell CA, Smith DL. Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg. J Phys Chem. 1982;86:3845–52.

    Article  CAS  Google Scholar 

  24. Gao C, Zhou GY, Xu Y, Hua TC. Glass transition and enthalpy relaxation of ethylene glycol and its aqueous solution. Thermochim Acta. 2005;435:38–43.

    Article  CAS  Google Scholar 

  25. Jabrane S, Létoffé JM, Claudy P. Study of the thermal behaviour of 1, 3-propanediol and its aqueous solutions. Thermochim Acta. 1998;311:121–7.

    Article  CAS  Google Scholar 

  26. Birge NO. Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. Phys Rev B. 1986;34:1631–42.

    Article  CAS  Google Scholar 

  27. Jabrane S, Létoffé JM, Claudy P. Vitrification and crystallization in the R(−)1, 2-propanediol-S(+)1, 2-propanediol system. Thermochim Acta. 1995;258:33–47.

    Article  CAS  Google Scholar 

  28. Eusébio ME, Jesus AJL, Cruz MSC, Leitão MLP, Redinha JS. Enthalpy of vaporisation of butanediol isomers. J Chem Thermodyn. 2003;35:123–9.

    Article  Google Scholar 

  29. Jesus AJL, Rosado MTS, Leitão MLP, Redinha JS. Molecular structure of butanediol isomers in gas and liquid states: combination of DFT calculations and infrared spectroscopy studies. J Phys Chem A. 2003;107:3891–7.

    Article  Google Scholar 

  30. Tanaka H. Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J Non-Cryst Solids. 2005;351:678–90.

    Article  CAS  Google Scholar 

  31. Shintani H, Tanaka H. Frustration on the way to crystallization in glass. Nat Phys. 2006;2:200–6.

    Article  CAS  Google Scholar 

  32. Debenedetti PB. Metastable Liquids, Concepts and Principles. New Jersey: Princeton University Press; 1996.

    Google Scholar 

  33. Reva ID, Jesus AJL, Rosado MTS, Fausto R, Eusébio ME, Redinha JS. Stepwise conformational cooling towards a single isomeric state in the four internal rotors system 1, 2-butanediol. Phys Chem Chem Phys. 2006;8:5339–49.

    Article  CAS  Google Scholar 

  34. MTS Rosado, AJL Jesus, I Reva, JS Redinha (manuscript in preparation).

  35. Jesus AJL, Rosado MTS, Reva I, Fausto R, Eusébio ME, Redinha JS. Conformational study of monomeric 2, 3-butanediols by matrix-isolation infrared spectroscopy and DFT calculations. J Phys Chem A. 2006;110:4169–79.

    Article  Google Scholar 

  36. Jesus AJL, Rosado MTS, Reva I, Fausto R, Eusébio ME, Redinha JS. Structure of isolated 1, 4-butanediol: Combination of MP2 calculations, NBO analysis, and matrix-isolation infrared spectroscopy. J Phys Chem A. 2008;112:4669–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ermelinda S. Eusébio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maria, T.M.R., Lopes Jesus, A.J. & Eusébio, M.E.S. Glass-forming ability of butanediol isomers. J Therm Anal Calorim 100, 385–390 (2010). https://doi.org/10.1007/s10973-009-0633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0633-z

Keywords

Navigation