Skip to main content
Log in

Differential thermal analysis of a zeolite Y crystalline structure in a catalyst

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this work was to employ the differential thermal analysis (DTA) technique to compare variations in the collapse energy of the zeolite Y crystalline structure in a fresh catalyst and in the same catalyst impregnated with nickel and vanadium. A small exothermic signal in the DTA curve at 950–1150 °C indicated the collapse of the crystalline structure. The areas of the exothermic signals in the DTA curves of the two samples indicated a reduction in the curve of the metal impregnated catalyst. These results were compared with X-ray data, leading to the conclusion that metal impregnation affects the zeolite Y crystalline structure and that the DTA technique is a potentially useful tool for measuring the integrity of zeolite Y in catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wormsbecher RF, Peters AW, Maselli JM. Vanadium poisoning of cracking catalysts: mechanism of poisoning and design of vanadium tolerant catalyst system. J Catal. 1986;100:130–7.

    Article  CAS  Google Scholar 

  2. Trujillo CA, Uribe UN, Knops-Gerrits PP, Oviedo LA, Jacobs PA. The mechanism of zeolite Y destruction by steam in the presence of vanadium. J Catal. 1997;168:1–15.

    Article  CAS  Google Scholar 

  3. Xu M, Liu XX, Madon RJ. Pathways for Zeolite Y destruction: the role of sodium and vanadium. J Catal. 2002;207:237–46.

    Article  CAS  Google Scholar 

  4. Liu C, Deng Y, Pan Y, Zheng S, Gao X. Interactions between heavy metals and clay matrix in fluid catalytic cracking catalysts. Appl Catal A. 2004;257:145–50.

    Article  CAS  Google Scholar 

  5. Harding RH, Peters AW, Nee JRD. New developments in FCC catalyst technology. Appl Catal A. 2001;221:389–96.

    Article  CAS  Google Scholar 

  6. Wendlandt WW. Thermal analysis. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  7. Liu J, Zhao Z, Xua C, Duana A, Zhub L, Wang X. Diesel soot oxidation over supported vanadium oxide and K-promoted vanadium oxide catalysts. Appl Catal B. 2005;61:36–46.

    Article  CAS  Google Scholar 

  8. El-Toufailia FA, Wiegnerb JP, Feix G, Reichert KH. Optimization of simultaneous thermal analysis for fast screening of polycondensation catalysts. Thermochim Acta. 2005;432:99–105.

    Article  Google Scholar 

  9. Crivello M, Péreza C, Fernándeza J, Eimera G, Herreroa E, Casuscellia S, et al. Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol. Appl Catal A. 2007;317(1):11–9.

    Article  CAS  Google Scholar 

  10. Habersberger K. Thermoanalytical investigation of zeolites and related compounds. Thermochim Acta. 1987;110:337–41.

    Article  CAS  Google Scholar 

  11. Pérez YO, Forero LAP, Cristiano-Torres DV, Trujillo CA. Brønsted acid site number evaluation using isopropylamine decomposition on Y-zeolite contaminated with vanadium in a simultaneous DSC–TGA analyzer. Thermochim Acta. 2008;470:36–9.

    Article  Google Scholar 

  12. Fan W, Wei S, Yokoi T, Inagaki S, Li J, Wang J, et al. Synthesis, characterization and catalytic properties of H-Al-YNU-1 and H-Al-MWW with different Si/Al ratios. J Catal. 2009;266:268–72.

    Article  CAS  Google Scholar 

  13. Mitchell BR. Metal contamination of cracking catalysts. 1. Synthetic metals. Ind Eng Chem Prod Res Dev. 1980;79:209–13.

    Article  Google Scholar 

  14. American Society for Testing, Materials (ASTM-3906–03). Standard test method for determination of relative X-ray diffraction intensities of Faujasite-type zeolite-containing materials. West Conshohocken: ASTM; 2003.

    Google Scholar 

  15. Mayoral MC, Isquierdo MT, Andrés JM, Rubio B. Aluminosilicates transformations in combustion followed by DSC. Thermochim Acta. 2001;373:173–80.

    Article  CAS  Google Scholar 

  16. Yang X, Sun Z, Wang D, Forsling W. Surface acid–base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides. J Colloid Interface Sci. 2007;308:395–404.

    Article  CAS  Google Scholar 

  17. Xu B, Rotunno F, Bordiga S, Prins R, Van Bokhoven JA. Reversibility of structural collapse in zeolite Y: alkane cracking and characterization. J Catal. 2006;241:66–73.

    Article  CAS  Google Scholar 

  18. Trigueiroa FE, Monteiro DFJ, Zotin FMZ, Sousa-Aguiar EF. Thermal stability of Y Zeolites containing different rare earth cations. J Alloys Compd. 2002;344:337–41.

    Article  Google Scholar 

  19. Zi G, Yi T, Yugin Z. Effect of dealumination defects on the properties of Y zeolite. Appl Catal. 1989;56:83–94.

    Article  Google Scholar 

  20. Kosanovic C, Subotic B, Smit I. Thermally induced phase transformations in cation-exchanged zeolites 4A, 13X and synthetic mordenite and their amorphous derivatives obtained by mechanochemical treatment. Thermochim Acta. 1998;317:25–37.

    Article  CAS  Google Scholar 

  21. Giuseppe C. Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids. 2006;67:1973–94.

    Article  Google Scholar 

  22. McDaniel CV, Maher PK. Zeolite stability and ultrastable zeolites. In: Rabo JA, editor. Zeolite chemistry and catalysis. 2nd ed. ACS Monograph 171. American Chemical Society: Washington, DC; 1979. p. 288.

  23. Freund JE, Gary SA. Modern elementary statistics. Englewood Cliffs: Prentice-Hall, Inc.; 1997.

    Google Scholar 

  24. Gonçalves MLA, Vieira MD, Cerqueira WV, Teixeira AMRF. A tool for predicting the integrity of Y zeolite crystalline structure by differential thermal analysis. J Therm Anal Calorim. 2009;97:503–6.

    Article  Google Scholar 

  25. Cristiano-Torres DV, Ozório-Pérez Y, Palomeque-Forero LA, Sandoval-Díaz LE, Trujillo CA. The action of vanadium over Y zeolite in oxidant and dry atmosphere. Appl Catal A. 2008;346:104–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq/PROSET (Conselho Nacional de Desenvolvimento Científico e Tecnológico/Programa Setorial de Petróleo) and PETROBRAS (Brazilian Oil Company).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa A. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, M.L.A., Vieira, M.D., Mota, D.A.P. et al. Differential thermal analysis of a zeolite Y crystalline structure in a catalyst. J Therm Anal Calorim 101, 965–971 (2010). https://doi.org/10.1007/s10973-009-0631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0631-1

Keywords

Navigation