Skip to main content
Log in

Impact of the gaseous environment on the kinetics of solid-state decompositions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main purpose of this study is to review the current state of the problem of the impact of gaseous environment on the kinetics of solid-state decompositions. Three different theoretical approaches to the interpretation of the decomposition kinetics have been considered. As it follows from the literature published over the past 80 years, the Arrhenius and Knudsen–Langmuir approaches based on the assumption of two different reaction mechanisms (congruent and incongruent) could not solve the problem. At the same time, successes in the application of the thermochemical approach that is based on the assumption of a unitary congruent dissociative vaporization mechanism with condensation of oversaturated vapor remain unnoticed by the TA community. Taking into account this situation, the author has outlined the key points of the thermochemical kinetics in a compact but rigorous and complete form once more. The revised kinetic equations for the different modes of decomposition, several important interrelations between the kinetic parameters, and, finally, the results in the interpretation or reappraisal of the main effects related to the impact of gaseous environment on the kinetics have been considered. In the framework of the thermochemical approach, the problem being discussed may be considered nowadays practically resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galwey AK, Brown ME. Thermal decomposition of ionic solids. Amsterdam: Elsevier; 1999.

    Google Scholar 

  2. Topley B, Smith ML. Function of water vapor in the dissociation of a salt hydrate. Nature. 1931;128:302.

    Article  CAS  Google Scholar 

  3. Furnas CC. The rate of calcination of limestone. Ind Eng Chem. 1931;23:534–8.

    Article  CAS  Google Scholar 

  4. Zawadzki J, Bretsznajder S. Über das Temperaturincrement der Reaktionsgeschwindigkeit bei Reaktionen vom Typus Afest = Bfest + Cgas. Z Elektrochem. 1935;41:215–23.

    CAS  Google Scholar 

  5. Gilbert IGF, Kitchener JA. The dissociation pressure of cadmium oxide. J Chem Soc. 1956;3919–21.

  6. Hyatt EP, Cutler IB, Wadsworth ME. Calcium carbonate decomposition in carbon dioxide atmosphere. J Am Ceram Soc. 1958;41:70–4.

    Article  CAS  Google Scholar 

  7. Mauras H. Étude cinétique isobare de la dissociation des systèmes solides (III). Dissociation du carbonate de calcium. Bull Soc Chim Fr. 1960;260–7.

  8. Pavlyuchenko MM, Prodan EA. Heterogeneous chemical reactions. Minsk: Nauka Tekhnika; 1961 (in Russian).

    Google Scholar 

  9. Hashimoto H. The thermal decomposition of calcium carbonates (II). The effect of carbon dioxide. J Chem Soc Jpn. 1961;64:1162–6.

    CAS  Google Scholar 

  10. Cremer E, Nitsch WZ. Über die Geschwindigkeit der CaCO3-Zersetzung in Abhängigkeit vom CO2-Druck. Z Elektrochem. 1962;66:697–702.

    CAS  Google Scholar 

  11. Ingraham TR, Marier P. Kinetics studies on the thermal decomposition of calcium carbonates. Can J Chem Eng. 1963;8:170–3.

    Google Scholar 

  12. Somorjai GA, Jepsen DW. Evaporation mechanism of CdS single crystals. J Chem Phys. 1964;41:1389–93.

    Article  CAS  Google Scholar 

  13. Zemtsova ZN, Pavlyuchenko MM, Prodan EA. Kinetics of thermal decomposition of SrCO3 in atmosphere of CO2. Vesti AN BSSR Ser Khim. 1971;5:21–6 (in Russian).

    Google Scholar 

  14. Koloberdin VI, Blinichev VN, Strel’tsov VV. The kinetics of limestone calcination. Int Chem Eng. 1975;15:101–4.

    Google Scholar 

  15. Searcy AW, Beruto D. Kinetics of endothermic decomposition reactions. 2. Effects of the solid and gaseous products. J Phys Chem. 1978;82:163–7.

    Article  CAS  Google Scholar 

  16. Darroudi T, Searcy AW. Effect of CO2 pressure on the rate of decomposition of calcite. J Phys Chem. 1981;85:3971–4.

    Article  CAS  Google Scholar 

  17. L’vov BV, Fernandes GHA. Regularities in thermal dissociation of oxides in graphite furnace for atomic absorption analysis. Zh Analit Khim. 1984;39:221–31 (in Russian).

    Google Scholar 

  18. Maciejewski M, Baldyga J. The influence of the pressure of the gaseous product on the reversible thermal decomposition of solids. Thermochim Acta. 1985;92:105–8.

    Article  CAS  Google Scholar 

  19. Dennis JS, Hayhurst AN. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidized beds. Chem Eng Sci. 1987;42:2361–72.

    Article  CAS  Google Scholar 

  20. Rao TR, Gunn DJ, Bowen JH. Kinetics of calcium carbonate decomposition. Chem Eng Res Des. 1989;67:38–47.

    CAS  Google Scholar 

  21. Malecki A, Prochowska-Klisch B. The influence of oxygen pressure on the kinetics of the thermal decomposition of Co3O4. J Therm Anal Calorim. 1994;41:1109–17.

    Article  CAS  Google Scholar 

  22. Wang Y, Thompson WJ. The effect of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction. Chem Eng Sci. 1995;50:1373–82.

    Article  CAS  Google Scholar 

  23. Criado JM, Gonzales M, Malek J, Ortega A. The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate. Thermochim Acta. 1995;254:121–7.

    Article  CAS  Google Scholar 

  24. L’vov BV. Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochim Acta. 1997;303:161–70.

    Article  Google Scholar 

  25. L’vov BV. The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta. 2001;373:97–104.

    Article  Google Scholar 

  26. L’vov BV, Ugolkov VL. Peculiarities of CaCO3, SrCO3 and BaCO3 decomposition in CO2 as a proof of their primary dissociative evaporation. Thermochim Acta. 2004;410:47–55.

    Article  Google Scholar 

  27. L’vov BV, Ugolkov VL. Decomposition of KMnO4 in different gases as a potential kinetics standard in thermal analysis. J Therm Anal Calorim. doi:10.1007/s10973-009-0143-z.

  28. Prodan EA, Pavlyuchenko MM, Prodan SA. Regularities of topochemical reactions. Minsk: Nauka Tekhnika; 1976 (in Russian).

    Google Scholar 

  29. L’vov BV, Novichikhin AV, Dyakov AO. Computer simulation of the Topley–Smith effect. Thermochim Acta. 1998;315:169–79.

    Article  Google Scholar 

  30. Stern KH. High temperature properties and thermal decomposition of inorganic salts with oxyanions. Boca Raton: CRC Press; 2000.

    Book  Google Scholar 

  31. Hertz H. Über die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Ann Phys Chem. 1882;17:177–200.

    Google Scholar 

  32. Knudsen M. Die Molekularströming der Gase durch Öffnungen und die Effusion. Ann Phys. 1909;28:999–1016.

    Article  CAS  Google Scholar 

  33. Langmuir I. The vapor pressure of metallic tungsten. Phys Rev. 1913;2:329–42.

    Article  Google Scholar 

  34. Langmuir I. The evaporation of small spheres. Phys Rev. 1918;12:368–70.

    Article  CAS  Google Scholar 

  35. Mills I. Quantities, units and symbols in physical chemistry. Oxford: Blackwell Science Publications; 1988.

    Google Scholar 

  36. L’vov BV. Role of vapor oversaturation in the thermal decomposition of solids. J Therm Anal Calorim. 2009;96:321–30.

    Article  Google Scholar 

  37. L’vov BV. Thermal decomposition of solid and liquid substances. St. Petersburg: Polytech University Publisher; 2006.

    Google Scholar 

  38. L’vov BV. Thermal decomposition of solids and melts. New thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.

    Google Scholar 

  39. L’vov BV. Mechanism and kinetics of thermal decomposition of carbonates. Thermochim Acta. 2002;386:1–16.

    Article  Google Scholar 

  40. L’vov BV, Ugolkov VL. Kinetics and mechanism of dehydration of kaolinite, muscovite and talc analyzed thermogravimetrically by the third-law method. J Therm Anal Calorim. 2005;82:15–22.

    Article  Google Scholar 

  41. L’vov BV. Fundamental restrictions of the second-law and Arrhenius plot methods used in the determination of reaction enthalpies in decomposition kinetics. J Therm Anal Calorim. 2008;92:639–42.

    Article  Google Scholar 

  42. L’vov BV, Ugolkov VL. The self-heating effect in the process of KMnO4 decomposition in vacuum. J Therm Anal Calorim. 2008;94:453–60.

    Article  Google Scholar 

  43. L’vov BV, Ugolkov VL. Use of potassium permanganate as a possible kinetic standard in thermal analysis. Russ J Appl Chem. 2007;80:1289–94.

    Article  Google Scholar 

  44. L’vov BV. Thermochemical approach to solid-state decomposition reactions against the background of traditional theories. J Therm Anal Calorim. 2009;96:487–93.

    Article  Google Scholar 

  45. L’vov BV. The mechanism of solid-state decompositions in a retrospective. J Therm Anal Calorim. doi:10.1007/s10973-009-0579-1.

Download references

Acknowledgements

The author thanks his colleague Dr. Leonid Polzik for the useful comments, and the author’s grandson Nikita L’vov for the linguistic correction of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris V. L’vov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’vov, B.V. Impact of the gaseous environment on the kinetics of solid-state decompositions. J Therm Anal Calorim 100, 967–974 (2010). https://doi.org/10.1007/s10973-009-0628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0628-9

Keywords

Navigation