Skip to main content
Log in

New features of the glass transition revealed by the StepScan® DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of StepScan DSC obtained for various oxides, chalcogenides, and organic glasses are discussed in connection with the commonly accepted theory of the glass transition. The new experimental features supporting the apparent idea of a reversible equilibrium being a part of the glass transition that is commonly interpreted as purely kinetic-relaxation phenomenon are discussed. Two alternative methods of the description of the reversible part of StepScan DSC record are compared:the empirical one using the exponential-power function [1 − exp(T/T g)n], and the second one based on the van’t Hoff’s equation describing the temperature dependence of equilibrium constant in terms of reaction enthalpy, ΔH. The adequacy of the empirical description is rationalized in the framework of the Tool–Narayanaswamy–Moynihan’s relaxation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sipp A, Richet P. Equivalence of volume, enthalpy and viscosity relaxation kinetics in glass-forming silicate liquids. J Non-Cryst Solids. 2002;298:202–12.

    Article  CAS  Google Scholar 

  2. Rao KJ. Structural chemistry of glasses. Amsterdam: Elsevier; 2002.

    Google Scholar 

  3. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW. Relaxation in glassforming liquids and amorphous solids. J Appl Phys. 2000;88:3113–57.

    Article  CAS  Google Scholar 

  4. Scherer GW. Relaxation in glass and composites. New York: Wiley; 1986.

    Google Scholar 

  5. Scherer GW. Volume relaxation far from equilibrium. J Am Ceram Soc. 1986;69:374–81.

    Article  Google Scholar 

  6. Narayanaswamy OS. A model of structural relaxation in glass. J Am Ceram Soc. 1971;54:491–8.

    Article  CAS  Google Scholar 

  7. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Res Nat Bur Stand. 1945;34:199–211.

    Article  CAS  Google Scholar 

  8. Tool AQ. Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc. 1946;29:240–53.

    Article  CAS  Google Scholar 

  9. Gutzow I, Schmelzer J. The vitreous state. New York: Springer; 1995.

    Book  Google Scholar 

  10. Cassel B, Scotto P, Sichina B. StepScan DSC: an alternative to the conventional modulated techniques. Perkin Elmer Application Note, PeTech-34.

  11. Kotelnikov GV, Moiseyeva SP, Mezhburd EV. Modulated capillary titration calorimeter. J Therm Anal Calorim. 2008;92:631–4.

    Article  CAS  Google Scholar 

  12. Carpenter J, Katayama D, Liu L, Chonkaew W, Menard K. Measurement of tg in lyophilized protein and proteinexcipient mixtures by dynamic mechanical analysis. J Therm Anal Calorim. 2009;95:881–4.

    Article  CAS  Google Scholar 

  13. Tsuchiya M. Molar-mass dependence of apparent relaxation time inmelting region of poly(oxytetramethylene)glycol. J Therm Anal Calorim. 2009;97:547–50.

    Article  CAS  Google Scholar 

  14. Černošek Z, Holubová J, Černošková E, Liška M. Enthalpic relaxation and the glass transition. J Optoelectron Adv Mater. 2002;4:489–503.

    Google Scholar 

  15. Boolchand P, Georgiev DG, Goodman B. Discovery of the intermediate phase in chalcogenide glasses. J Optoelectron Adv Mater. 2001;3:703–20.

    CAS  Google Scholar 

  16. Boolchand P, Georgiev DG, Micoulaut M. Nature of glass transition in chalcogenides. J Optoelectron Adv Mater. 2002;4:823–36.

    CAS  Google Scholar 

  17. Cai L, Boolchand P. Nanoscale phase separation of GeS2 glass. Phil Mag. 2002;B82:1649–57.

    Google Scholar 

  18. Holubová J, Černošek Z, Černošková E. Conf. on Non-Crystalline Inorganic Materials 2003, April 8–12, 2003, Bonn, Germany, Book of Abstracts, p. 99.

  19. Holubová J. Thesis, University Pardubice, Pardubice 2004.

  20. Chromčíková M, Holubová J, Liška M, Černošek Z, Černošková E. Modeling of the reversible part of StepScan DSC measurement of the glass transition. Ceramics. 2005;49:91–6.

    Google Scholar 

  21. Atkins PW. Physical chemistry. 3rd ed. New York: W.H. Freeman Comp; 1986. p. 221–4.

    Google Scholar 

  22. Holubová J, Černošek Z, Černošková E, Liška M. Isothermal structural relaxation: temperature and time dependencies of relaxation parameters. J Non-Cryst Solids. 2003;326 & 327:135–40.

    Article  Google Scholar 

  23. Certificate of Viscosity Values, Standard Sample No. 711 Lead-Silica Glass, U.S. Department of Commerce, National Bureau of Standards, Washington, D.C. 20235.

Download references

Acknowledgements

This study was supported by Ministry of Education of the Slovak Republik under the grant AV 4/0025/07, and the Slovak Grant Agency for Science under the grant VEGA 1/0330/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Liška.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liška, M., Černošek, Z., Chromčíková, M. et al. New features of the glass transition revealed by the StepScan® DSC. J Therm Anal Calorim 101, 189–194 (2010). https://doi.org/10.1007/s10973-009-0625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0625-z

Keywords

Navigation