Skip to main content
Log in

Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymer in diluents via thermally induced phase separation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Non-isothermal crystallization kinetics of the ethylene–acrylic acid copolymer (EAA) in diluents during thermally induced phase separation (TIPS) process was investigated via differential scanning calorimetry (DSC). Dioctyl phthalate (DOP), diphenyl ester (DPE), and peanut oil were used as diluents. Kinetic models, such as Jeziorny theory, Ozawa theory, and Mo’s approach, were utilized for description. The effective activation energy of EAA component in mixture was calculated by Friedman’s method. In the results, the Jeziorny theory and Mo’s approach could obtain good linear fitting relationship with the primary crystallization behavior of EAA, but the Ozawa theory failed to get a suitable result. The homogeneous nucleation of EAA proceeded at the end of liquid–liquid phase separation, while the non-isothermal crystallization developed within a solid–liquid phase separation environment. In the mixtures, the molecular weight, polar groups, and conformation of the diluent molecules would affect the nucleation of EAA, and its growth rate. Comparing with the non-isothermal crystallization of neat EAA, EAA in diluents obtained a higher Avrami index n, and comparatively lower crystallization rate. Peanut oil facilitated the homogeneous nucleation of EAA, leading to a higher melting peak temperature of EAA in the subsequent melting endotherms. The largest EAA’s Avrami index obtained in peanut oil also indicated a higher crystal growth dimensional geometry. The crystallization rate and crystallinity of EAA during the non-isothermal process decreased in the sequence: EAA/DPE > EAA/DOP > EAA/peanut oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lim GBA, Kim SS, Ye Q, Wang YF, Lloyd DR. Microporous membrane formation via thermally induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. J Membr Sci. 1991;64(1–2):31–40.

    Article  CAS  Google Scholar 

  2. Yang MC, Perng JS. Microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent-camphene. J Membr Sci. 2001;187(1):13–22.

    Article  CAS  Google Scholar 

  3. Baltus RE. Characterization of the pore area distribution in porous membranes using transport measurements. J Membr Sci. 1997;123(2):165–84.

    Article  CAS  Google Scholar 

  4. Hollman AM, Scherrer NT, Cammers-Goodwin A, Bhattacharyya D. Separation of dilute electrolytes in poly(amino acid) functionalized microporous membranes: model evaluation and experimental results. J Membr Sci. 2004;239(1):65–79.

    Article  CAS  Google Scholar 

  5. Jeon MY, Kim CK. Phase behavior of polymer/diluent/diluent mixtures and their application to control microporous membrane structure. J Membr Sci. 2007;300(1–2):172–81.

    Article  CAS  Google Scholar 

  6. Nunes SP, Peinemann KV. Ultrafiltration membranes from PVDF/PMMA blends. J Membr Sci. 1992;73(1):25–35.

    Article  CAS  Google Scholar 

  7. Ochoa NA, Masuelli M, Marchese J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J Membr Sci. 2003;226(1–2):203–11.

    Article  CAS  Google Scholar 

  8. Gu MH, Zhang J, Wang XL, Tao HJ, Ge LT. Formation of poly(vinylidene fluoride) (PVDF) membrane via thermally induced phase separation. Desalination. 2006;192(11):160–7.

    Article  CAS  Google Scholar 

  9. Wang S, Torkeson JM. Coarsening effects on the formation of microporous membrane produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. J Membr Sci. 1995;98(3):209–22.

    Article  Google Scholar 

  10. Shang MX, Matsuyama H, Teramotoa M. Preparation and membrane performance of poly(ethylene-co-vinylalcohol) hollow fiber membrane via thermally induced phase separation. Polymer. 2003;44(24):7441–7.

    Article  CAS  Google Scholar 

  11. Zhou J, Yin J, Lv R, Du Q, Zhong W. Preparation and properties of MPEG-grafted EAA membranes via thermally induced phase separation. J Membr Sci. 2005;267(1–2):90–8.

    Article  CAS  Google Scholar 

  12. Zhou J, Lin Y, Du Q, Zhong W, Wang H. Effect of MPEG on MPEG-grafted EAA membrane formation via thermally induced phase separation. J Membr Sci. 2006;283(1–2):310–9.

    Article  CAS  Google Scholar 

  13. Kolesov IS, Androsch R, Radusch HJ. Non-isothermal crystallization of polyethylenes as function of cooling rate and concentration of short chain branches. J Therm Anal Calorim. 2004;78(3):885–95.

    Article  CAS  Google Scholar 

  14. Parasnis NC, Ramani K. Non-isothermal crystallization of UHMWPE. J Therm Anal Calorim. 1999;55(3):709–19.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Sbirrazzuoli N. Estimating the activation energy for non-isothermal crystallization of polymer melts. J Therm Anal Calorim. 2003;72(2):681–6.

    Article  CAS  Google Scholar 

  16. Alvarez VA, Stefani PM, Vazquez A. Non-isothermal crystallization of polyvinylalcohol-co-ethylene. J Therm Anal Calorim. 2005;79(1):187–93.

    Article  CAS  Google Scholar 

  17. Zhang J, Chen SJ, Su J, Shi XM, Jin J, Wang XP, et al. Non-isothermal crystallization kinetics and melting behavior of EAA with different acrylic acid content. J Therm Anal Calorim. 2009;97(3):959–67.

    Article  CAS  Google Scholar 

  18. Gu MH, Zhang J, Wang XL. Crystallization behavior of PVDF in PVDF-DMP system via thermally induced phase separation. J Appl Polym Sci. 2006;102(4):3714–9.

    Article  CAS  Google Scholar 

  19. Tao HJ, Zhang J, Wang XL. Phase separation, polymer crystallization in TPX-DOS -DMP system via thermally induced phase separation. J Polym Sci B. 2007;45(2):153–61.

    Article  CAS  Google Scholar 

  20. Brandrup J, Immergut EH. Polymer handbook. New York: Wiley; 1999.

    Google Scholar 

  21. Lloyd DR, Kim SS, Kinzer KE. Microporous membrane formation via thermally induced phase separation. II. Liquid–liquid phase separation. J Membr Sci. 1991;64(1–2):1–11.

    Article  CAS  Google Scholar 

  22. Matsuyama H, Maki T, Teramoto M. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J Membr Sci. 2002;204(1–2):323–8.

    Article  CAS  Google Scholar 

  23. McGuire KS, Laxminarayan A, Lloyd DR. Simple method of extrapolating the coexistence curve and predicting the melting point depression curve from cloud point data for polymer-diluent systems. Polymer. 1994;35(20):4404–7.

    Article  CAS  Google Scholar 

  24. Zhang J, Fu J, Wang XL. Effect of diluents on hydrophilic ethylene-acrylic acid co-polymer membrane structure via thermally induced phase separation. Desalination. 2006;192(1–3):151–9.

    Article  CAS  Google Scholar 

  25. Cebe P, Hong SD. Crystallization behavior of poly (ether–ether–ketone). Polymer. 1986;27(8):1183–92.

    Article  CAS  Google Scholar 

  26. Avrami M. Kinetics of phase change (I): general theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  27. Avrami M. Kinetics of phase change (II): transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  28. Avrami M. Granulation, phase change and microstructure. J Chem Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  29. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19(10):1142–4.

    Article  CAS  Google Scholar 

  30. Huang JW, Chang CC, Kang CC, Yeh MY. Crystallization kinetics and nucleation parameters of Nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta. 2008;468(1–2):66–74.

    Article  CAS  Google Scholar 

  31. Rychly J, Janigova I. Avrami equation and nonisothermal crystallization of polyethylene investigated by DSC. Thermochim Acta. 1993;215:211–8.

    Article  CAS  Google Scholar 

  32. Shi XM, Jin J, Chen SJ, Zhang J. Multiple melting and partial miscibility of ethylene-vinyl acetate copolymer/low density polyethylene blends. J Appl Polym Sci. 2009;113(5):2863–71.

    Article  CAS  Google Scholar 

  33. Liu MY, Zhao QX, Wang YD, Zhang CG, Mo ZS, Cao SK. Melting behaviors, isothermal and non-isothermal crystallization kinetics of nylon 1212. Polymer. 2003;44(8):2537–45.

    Article  CAS  Google Scholar 

  34. Choe CR, Lee KH. Nonisothermal crystallization kinetics of poly(etheretherketone) (PEEK). Polym Eng Sci. 1989;29(12):801–5.

    Article  CAS  Google Scholar 

  35. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Article  CAS  Google Scholar 

  36. Xu JT, Wang Q, Fan ZQ. Non-isothermal crystallization kinetics of exfoliated and intercalated polyethylenemontmorillonite nanocomposites prepared by in situ polymerization. Eur Polym J. 2005;41(12):3011–7.

    Article  CAS  Google Scholar 

  37. Liu TX, Mo ZS, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–71.

    Article  CAS  Google Scholar 

  38. Zhang QX, Zhang ZH, Zhang HF, Mo ZS. Isothermal and nonisothermal crystallization kinetics of nylon-46. J Polym Sci B. 2002;40(16):1784–93.

    Article  CAS  Google Scholar 

  39. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  40. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  41. Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B. 2003;107(3):882–8.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Dranca I. Isoconversional analysis of combined melt and glass crystallization data. Macromol Chem Phys. 2006;207(1):20–5.

    Article  CAS  Google Scholar 

  43. Qudah AMA, Al-Raheil IA. Morphology and melting behaviour of poly(ethylene terephthalate) crystallized from the glassy state. Polym Int. 1995;38(4):367–73.

    Article  CAS  Google Scholar 

  44. McGuire KS, Laxminarayan A, Lloyd DR. Kinetics of droplet growth in liquid-liquid phase separation of polymer-diluent systems: experimental results. Polymer. 1995;36(26):4951–60.

    Article  CAS  Google Scholar 

  45. Shen M, Mehra U, Niinomi M, Koberstein JT, Cooper SL. Morphological, rheo-optical, and dynamic mechanical studies of a semicrystalline block copolymer. J Appl Phys. 1974;45(10):4182–9.

    Article  CAS  Google Scholar 

  46. Zhang J, Luo F, Wang XL, Chen JF, Xu ZZ. The effect of kinetic factors on the structure of the hydrophilic ethylene-acrylic acid copolymer microporous membranes prepared via thermally induced phase separation. Acta Polym Sin. 2003;42(2):241–6.

    Google Scholar 

  47. Laxminarayan A, McGuire K, Kim S, Lloyd D. Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation. Polymer. 1994;35(14):3060–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, S., Jin, J. et al. Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymer in diluents via thermally induced phase separation. J Therm Anal Calorim 101, 243–254 (2010). https://doi.org/10.1007/s10973-009-0619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0619-x

Keywords

Navigation