Skip to main content
Log in

Thermodynamic investigation of room temperature ionic liquid

The heat capacity and thermodynamic functions of BMIPF6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluoroborate (BMIPF6) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature (X) by polynomial equations, C P,m (J K−1 mol−1) = 204.75 + 81.421X − 23.828 X 2 + 12.044X 3 + 2.5442X 4 [X = (T − 132.5)/52.5] for the solid phase (80–185 K), C P,m (J K−1 mol−1) = 368.99 + 2.4199X + 1.0027X 2 + 0.43395X 3 [X = (T − 230)/35] for the glass state (195 − 265 K), and C P,m (J K−1 mol−1) = 415.01 + 21.992X − 0.24656X 2 + 0.57770X 3 [X = (T − 337.5)/52.5] for the liquid phase (285–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIPF6 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BMIPF6 was measured to be 190.41 K, the enthalpy and entropy of the glass transition were determined to be ΔH g = 2.853 kJ mol−1 and ΔS g = 14.98 J K−1 mol−1, respectively. The results showed that the milting point of the BMIPF6 is 281.83 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 20.67 kJ mol−1 and ΔS m = 73.34 J K−1 mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gordon CM, Holbrey JD, Kennedy AR, Seddon KR. Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem. 1998;8:2627–36.

    Article  CAS  Google Scholar 

  2. Fuller J, Cartin RT, Osteryoung RA. The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J Electrochem Soc. 1997;144:3881–6.

    Article  CAS  Google Scholar 

  3. Sun J, Forsyth M, Macfarlane DR. Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B. 1998;102:8858–64.

    Article  CAS  Google Scholar 

  4. Welton T. Room-temperature ionic liquids. Chem Rev. 1999;99:2071–83.

    Article  CAS  Google Scholar 

  5. Carmichael AJ, Seddon KR. Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem. 2000;13:591–5.

    Article  CAS  Google Scholar 

  6. Song CE, Shim WH, Roh EJ, Lee SG, Choi JH. Ionic liquids as powerful media in scandium triflate catalysed Diels-Alder reactions: significant rate acceleration, selectivity improvement and easy recycling of catalyst. Chem Commun. 2001;12:1122–3.

    Article  Google Scholar 

  7. Wasserscheid P, Gordon CM, Hilgers C, Muldoon MJ, Dunkin IR. Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher alpha-olefins with cationic Ni complexes. Chem Commun. 2001;13:1186–7.

    Article  Google Scholar 

  8. Wheeler C, West KN, Liotta CL, Eckert CA. Ionic liquids as catalytic green solvents for nucleophilic displacement reactions. Chem Commun. 2001;10:887–8.

    Article  Google Scholar 

  9. Endres F. Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Phys Chem Chem Phys. 2001;3:3165–74.

    Article  CAS  Google Scholar 

  10. Najdanovic-Visak V, Esperanca MSS J, Rebelo LPN. Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water plus ethanol). Phys Chem Chem Phys. 2002;4:1701–3.

    Article  CAS  Google Scholar 

  11. Vasserscheid P, Keim W. Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed. 2000;39:3772–89.

    Google Scholar 

  12. Appleby D, Hussey CL, Seddon KR, Turp JE. Room-temperature ionic liquids as solvents for electronic absorption-spectroscopy of halide-complexes. Nature. 1986;32:3614–6.

    Google Scholar 

  13. Anthony JL, Maginn FJ, Brennecke. Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B. 2001;105:10942–9.

    Article  CAS  Google Scholar 

  14. Yang JZ, Tian P, He LL, Xu WG. Studies on room temperature ionic liquid InCl3-EMIC. Fluid Phase Equilib. 2003;204:295–302.

    Article  CAS  Google Scholar 

  15. Yang JZ, Xu WG, Zhang QG. Thermodynamics of {1-methyl-3-butylimidazolium chloride plus iron(III) chloride}. J Chem Thermodyn. 2003;35:1855–60.

    Article  CAS  Google Scholar 

  16. Yang JZ, Zhang ZH, Fang DW, Li JG, Guan W, Tong J. Studies on enthalpy of solution for ionic liquid: the system of 1-methyl-3-ethylimidazolium tetrafluoroborate (EMIBF4). Fluid Phase Equilib. 2006;247:80–3.

    Article  CAS  Google Scholar 

  17. Yang JZ, Tian P, Xu WG. Studies on an ionic liquid prepared from InCl3 and 1-methyl-3-butylimidazolium chloride. Thermochim Acta. 2004;4:121–5.

    Google Scholar 

  18. Holbrey JD, Reichert WM, Swatloski RP. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 2002;4:407–13.

    Article  CAS  Google Scholar 

  19. Fuller J, Osteryoung RA, Carlin RT. Rechargeable lithium and sodium anodes in chloroaluminate molten-salts containing thionyl chloride. J Electrochem Soc. 1995;142:3632–36.

    Article  CAS  Google Scholar 

  20. Jacobsen EN, Marko I, Sharpless KB. Asymmetric dihydroxylation via ligand-accelerated catalysis. J Am Chem Soc. 1988;110:1968–70.

    Article  CAS  Google Scholar 

  21. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.

    Article  CAS  Google Scholar 

  22. Suarez PAZ, Dullius JEL, Einloft S, Souza RFD, Dupnot J. The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron. 1996;157:1217–9.

    Article  Google Scholar 

  23. Dyson PJ, Grossel MC, Srinivasan N, Vine T, Welton T, Williams DJ, et al. Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. J Chem Soc Dalton Trans. 1997;19:3465–9.

    Article  Google Scholar 

  24. Lau RM, Van Rantwijk F, Seddon KR, Sheldon RA. Lipase-catalyzed reactions in ionic liquids. Org Lett. 2000;2:4189–91.

    Article  CAS  Google Scholar 

  25. Jiang JD, Gao S, Li ZH, Su GY. Gel polymer electrolytes prepared by in situ polymerization of vinyl monomers in room-temperature ionic liquids. React Funct Polym. 2006;66:1141–8.

    Article  CAS  Google Scholar 

  26. Tan ZC, Sun GY, Sun Y, Yin AX, Wang WB, Ye JC, et al. An adiabatic low-temperature calorimeter for heat-capacity measurement of small samples. J Therm Anal Calorim. 1995;45:59–67.

    Article  CAS  Google Scholar 

  27. Tan ZC, Sun LX, Meng Sh, Li L, Xu F, Liu BP. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. J Chem Thermodyn. 2002;34:1417–29.

    Article  CAS  Google Scholar 

  28. Archer DG. Thermodynamic properties of synthetic sapphire (alpha-al2o3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

  29. Qi YN, Xu F, Ma HJ, Sun LX, Zhang J, Jiang T. Thermal stability and glass transition behavior of PANI/gamma-Al2O3 composites. J Therm Anal Calorim. 2008;91:219–23.

    Article  CAS  Google Scholar 

  30. Wang SX, Tan ZC, Di YY, Xu F, Wang MH, Sun LX, et al. Calorimetric study and thermal analysis of crystalline nicotinic acid. J Therm Anal Calorim. 2004;76:335–42.

    Article  CAS  Google Scholar 

  31. Xu F, Sun LX, Tan ZC, Liang JG. Low-temperature heat capacities and standard molar enthalpy of formation of aspirin. J Therm Anal Calorim. 2004;76:481–9.

    Article  CAS  Google Scholar 

  32. Nan ZD, Tan ZC. Low-temperature heat capacities and derived thermodynamic functions of cyclohexane. J Therm Anal Calorim. 2004;76:955–63.

    Article  CAS  Google Scholar 

  33. Xue B, Wang JY, Tan ZC, Lu SW, Meng SH. Heat capacities and thermodynamic properties of chrysanthemic acid. J Therm Anal Calorim. 2004;76:965–73.

    Article  CAS  Google Scholar 

  34. Song YJ, Tan ZC, Lu SW, Xue Y. Thermochemical and thermal analysis on N-(p-methylphenyl)-N′-(2-pyridyl)urea. J Therm Anal Calorim. 2004;77:873–82.

    Article  CAS  Google Scholar 

  35. Tan ZC, Xue B, Lu SW, Meng SH, Yuan XH, Song YJ. Heat capacities and thermodynamic properties of fenpropathrin (C22H23O3N). J Therm Anal Calorim. 2001;63:297–308.

    Article  CAS  Google Scholar 

  36. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  37. Zhang J, Zeng JL, Liu YY, Sun LX, Xu F, You WS, et al. Thermal decomposition kinetics of the synthetic complex Pb(1, 4-BDC)·(DMF)(H2O). J Therm Anal Calorim. 2008;91:189–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (No. 2083309, 20873148, 20903095,50671098 and U0734005), 863 projects (2007AA05Z115 and 2007AA05Z102), the National Basic Research Program (973 program) of China (2010CB631303) and IUPAC (Project No. 2008-006-3-100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. X. Sun or F. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.H., Cui, T., Zhang, J.L. et al. Thermodynamic investigation of room temperature ionic liquid. J Therm Anal Calorim 101, 1143–1148 (2010). https://doi.org/10.1007/s10973-009-0610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0610-6

Keywords

Navigation