Skip to main content
Log in

Studies on heat capacities and thermal analysis of Li–Mg–N–H hydrogen storage system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat capacities of LiNH2 and Li2MgN2H2 were measured by a modulated differential scanning calorimetry (MDSC) over the temperature range from 223 to 473 K for the first time. The value of heat capacity of LiNH2 is bigger than that of Li2MgN2H2 from 223 to 473 K. The thermodynamic parameters such as enthalpy (HH 298.15) and entropy (SS 298.15) versus 298.15 K were calculated based on the above heat capacities. The thermal stabilities of them were investigated by thermogravimetric analysis (TG) at a heating rate of 10 K min−1 with Ar gas flow rate of 30 mL min−1 from room temperature to 1,080 K. TG curves showed that the thermal decomposition of them occurred in two stages. The order of thermal stability of them is: Li2MgN2H2 > LiNH2. The results indicate that addition of Mg increases the thermal stability of Li–N–H system and decrease the value of heat capacities of Li–N–H system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen P, Xiong ZT, Liu J, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420:302–4.

    Article  CAS  Google Scholar 

  2. Nakamori Y, Orimo SI. Destabilization of Li-based complex hydrides. J Alloys Compd. 2004;370:271–5.

    Article  CAS  Google Scholar 

  3. Xiong ZT, Chen P, Wu GT, Lin JY, Tan KL. Investigations into the interaction between hydrogen and calcium nitride. J Mater Chem. 2003;13:1676–80.

    Article  CAS  Google Scholar 

  4. Xiong ZT, Wu GT, Hu JJ, Chen P. Ternary imides for hydrogen storage. Adv Mater. 2004;17:1522–5.

    Article  CAS  Google Scholar 

  5. Lou WF. (LiNH2-MgH2): a viable hydrogen storage system. J Alloys Compd. 2004;381:284–7.

    Article  CAS  Google Scholar 

  6. Leng HY, Ichikawa T, Hino S, Nobuko H, Shigehito I, Hironobu F. New metal-N-H system composed of Mg(NH2)(2) and LiH for hydrogen storage. J Phys Chem B. 2004;108:12628–30.

    Article  CAS  Google Scholar 

  7. Araújo CM, Scheicher RH, Jena P, Ahuja R. On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. Appl Phys Lett. 2007;91:091924.

    Article  CAS  Google Scholar 

  8. Isobe S, Ichikawa T, Leng H, Fujii H, Kojima Y. Hydrogen desorption processes in Li–Mg–N–H systems. J Phys Chem Solids. 2008;69:2234–6.

    Article  CAS  Google Scholar 

  9. Xiong ZT, Hu JJ, Wu GT, Chen P, Lou WF, Gross K, et al. Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system. J Alloys Compd. 2005;398:235–9.

    Article  CAS  Google Scholar 

  10. Reading M, Luget A, Wilson R. Modulated differential scanning calorimetry. Thermochim Acta. 1994;238:295–307.

    Article  CAS  Google Scholar 

  11. Swier S, Mele BV. The heat capacity signal from modulated temperature DSC in non-isothermal conditions as a tool to obtain morphological information during reaction-induced phase separation. Polymer. 2003;44:6789–806.

    Article  CAS  Google Scholar 

  12. Divi S, Chellappa R, Chandra D. Heat capacity measurement of organic thermal energy storage materials. J Chem Thermodyn. 2006;38:1312–26.

    Article  CAS  Google Scholar 

  13. Zhang J, Liu YY, Zeng JL, Xu F, Sun LX, You WS, et al. Thermodynamic properties and thermal stability of the synthetic zinc formate dehydrate. J Therm Anal Calorim. 2008;91:861–6.

    Article  CAS  Google Scholar 

  14. Qiu SJ, Chu HL, Zhang J, Qi YN, Sun LX, Xu F. Heat capacities and thermodynamic properties of CoPc and CoTMPP. J Therm Anal Calorim. 2008;91:841–8.

    Article  CAS  Google Scholar 

  15. Zhang J, Zeng JL, Liu YY, Sun LX, Xu F, You WS, et al. Thermal decomposition kinetics of the synthetic complex Pb(1, 4-BDC)∙(DMF)(H2O). J Therm Anal Calorim. 2008;91:189–93.

    Article  CAS  Google Scholar 

  16. Wunderlich B, Jin Y, Boller A. Mathematical-description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta. 1994;238:277–93.

    Article  CAS  Google Scholar 

  17. Danley RL. New modulated DSC measurement technique. Thermochim Acta. 2003;402:91–8.

    CAS  Google Scholar 

  18. Wunderlich B. The contributions of MDSC to the understanding of the thermodynamics of polymers. J Therm Anal Calorim. 2006;85:179–87.

    Article  CAS  Google Scholar 

  19. Archer DG. Thermodynamic properties of synthetic sapphire (alpha-al2o3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data. 1993;22:1441–53.

    Article  CAS  Google Scholar 

  20. Chen P, Xiong ZT, Luo JZ, Lin JY, Tan KL. Interaction between lithium amide and lithium hydride. J Phys Chem B. 2003;107:10967–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the National Natural Science Foundation of China (No. 2083309, 20873148, 20903095, 50671098, and U0734005), 863 projects (2007AA05Z115 and 2007AA05Z102), the National Basic Research Program (973 program) of China (2010CB631303) and IUPAC (Project No. 2008-006-3-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. X. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F., Sun, L.X., Chen, P. et al. Studies on heat capacities and thermal analysis of Li–Mg–N–H hydrogen storage system. J Therm Anal Calorim 100, 701–706 (2010). https://doi.org/10.1007/s10973-009-0603-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0603-5

Keywords

Navigation