Skip to main content
Log in

Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of present research was to sinter nanosized Mn–Zn ferrites (MZF) at low temperature (≤1,000 °C) by avoiding the formation of nonmagnetic phase (hematite). For this purpose, MZF powder was synthesized by sol–gel auto combustion process at 220 °C and further calcined at 450 °C. In calcined powder, single phase (spinel) was confirmed by X-ray diffraction analysis. Pellets were pressed, having 43% of the theoretical density and showing 47 emu gm−1 saturation magnetization (M s). Various combinations of heating rate, dwelling time and gaseous environment were employed to meet optimum sintering conditions at low temperature (≤1,000 °C). It was observed that sintering under air or N2 alone had failed to prevent the formation of nonmagnetic (hematite) phase. However, hematite phase can be suppressed by retaining the green compacts at 1,000 °C for 180 min in air then further kept for 120 min in nitrogen. Under these conditions, spinel phase (comprising of nano crystallites), 90% of theoretical density and 102 emu gm−1 of saturation magnetization has been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qureshi AH. The influence of hafnia and impurities (CaO/SiO2) on the microstructure and magnetic properties of Mn–Zn ferrites. J Cryst Growth. 2006;286:365–70.

    Article  CAS  Google Scholar 

  2. Bozadjiev L, Dimova T, Doynov M. Solid solutions in the system jacobcite MnFe2O4–franklinite ZnFe2O4. Geosciences 2006;131–134.

  3. Tomar MS, Singh SP, Perales-Perez O, Guzman RP, Calderon E, Rinaldi-Ramos C. Synthesis and magnetic behavior of nanostructured ferrites for spintronics. Microelectron J. 2005;36:475–9.

    Article  CAS  Google Scholar 

  4. Bueno AR, Gregori ML, Nόbrega MCS. Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50−x Zn0.50−x Mn2x Fe2O4 ferrite prepared by the citrate–nitrate precursor method. Mater Chem Phys. 2007;105:229–33.

    Article  CAS  Google Scholar 

  5. Jeyadevan B, Tohiji K, Nakatsuka K, Narayanasamy A. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn–Zn ferrite using extended X-ray absorption fine structure. J Magn Magn Mater. 2000;217:99–105.

    Article  CAS  Google Scholar 

  6. Hou J, Qu Y, Ma W, Sun Q. Effect of CuO–Bi2O3 on low temperature sintered MnZn-ferrite by sol–gel auto-combustion method. Sol-Gel Sci Technol. 2007;44:15–20.

    Article  CAS  Google Scholar 

  7. Wang H, Kung S. Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J Magn Magn Mater. 2004;270:230–6.

    Article  CAS  Google Scholar 

  8. Ahmed MA, Okasha N, El-Sayed MM. Enhancement of the physical properties of rare-earth-substituted Mn–Zn ferrites prepared by flash method. Ceram Int. 2007;33:49–58.

    Article  CAS  Google Scholar 

  9. Tangsali RB, Keluskar SH, Niak GK, Budkuley JS. Effect of sintering conditions on resistivity of nanoparticle Mn–Zn ferrite prepared by nitrilotriacetate precursor method. J Mater Sci. 2007;42:878–82.

    Article  CAS  Google Scholar 

  10. Inaba H, Matsui T. Vaporization and diffusion of manganese–zinc ferrite. J Sol Stat Chem. 1996;121:143–8.

    Article  CAS  Google Scholar 

  11. Hofmann MH, Campbell SJ, Ehrhardt H, Feyerherm R. The magnetic behaviour of nanostructured zinc ferrite. J Mater Sci. 2004;39:5057–65.

    Article  CAS  Google Scholar 

  12. Rath C, Anand S, Das RP, Sahu KK, Kulkarni SD, Date SK, et al. Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn–Zn ferrite. J Appl Phys. 2002;91:2211–5.

    Article  CAS  Google Scholar 

  13. Agraflotis CC, Zaspalis VT. Self-propagating high-temperature synthesis of MnZn-ferrites for inductor applications. J Magn Magn Mater. 2004;283:364–74.

    Article  CAS  Google Scholar 

  14. Rosales MI, Plata AM, Nicho ME, Brito A, Ponce MA. Effect of sintering conditions on microstructure and magnetic properties of Mn–Zn ferrites. J Mater Sci. 1995;30:4446–50.

    Article  CAS  Google Scholar 

  15. Limin D, Zhidong H, Yaoming Z, Ze W, Xianyou Z. Preparation and sinterability of Mn–Zn ferrite powders by sol-gel method. J Rare Earths. 2006;24:54–6.

    Article  Google Scholar 

  16. Waqas H, Qureshi AH. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol-gel auto combustion process. J Therm Anal Calorim 2009;98:355–60.

    Article  CAS  Google Scholar 

  17. Lorentzou S, Agraflotis CC, Konstandopoulos AG. Aerosol spray pyrolysis synthesis of water-splitting ferrites for solar hydrogen production. Granul Matter. 2008;10:113–22.

    Article  CAS  Google Scholar 

  18. Azadmanjiri J. Preparation of Mn–Zn ferrite nano particles from chemical sol–gel combustion method and the magnetic properties after sintering. J Non-Cryst Sol. 2007;353:4170–3.

    Article  CAS  Google Scholar 

  19. Shabbir G, Qureshi AH, Saeed K. Nano-crystalline LaFeO3 powders synthesized by the citrate-gel method. Mater Lett. 2006;60:3706–9.

    Article  CAS  Google Scholar 

  20. Broussaud M, Abouaf M, Perriat P, Rolland JL. Advances in ferrites. ICF5. 1989;5:75–81.

    Google Scholar 

  21. Rozman M, Drofenik M. Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc. 1995;9:2449–55.

    Article  Google Scholar 

  22. Neijts RC, Advances in ferrites. Internal Philips Report, 1989;1179–1184.

  23. Vladimirtseva LA, Soltyk VE. Relationship between the phase composition and technological characterization of Mn–Zn ferrite powders. Porosh Metall. 1972;7:45–50.

    Google Scholar 

  24. Rozman M, Drofenik M. Sintering of nanosized Mn–Zn ferrite powders. J Am Ceram Soc. 1998;81:1757–64.

    Article  CAS  Google Scholar 

  25. Arhad M, Qureshi AH. Time and temperature base study for the production of high Tc phase by sol–gel technique in Pb-BSCCO system. J Therm Anal Calorim. 2006;83:415–9.

    Article  CAS  Google Scholar 

  26. Huijbregts WMM, Microscopy at the boiler corrosion research. Electrical 1971;49:254–259 (translated from Dutch).

    Google Scholar 

Download references

Acknowledgements

Many thanks to Pakistan Higher Education Commission (HEC) for its financial support. Author would also like to acknowledge National University of Singapore (NUS) for providing the opportunity of research at the Department of Materials Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Waqas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waqas, H., Qureshi, A.H. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process. J Therm Anal Calorim 100, 529–535 (2010). https://doi.org/10.1007/s10973-009-0590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0590-6

Keywords

Navigation