Skip to main content
Log in

Characterization of polypropylene/layered silicate nanocomposites prepared by single-step method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The extent of organo-modified clay (C93A) platelets dispersion in polymer matrix and crystallization and melting behavior of iPP-based nanocomposites prepared by a single-step melt-mixing method were investigated by wide-angle X-ray diffraction (WAXD), transmission (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). WAXD patterns revealed exfoliated structure of nanocomposites containing 1 wt% clay, and mixed intercalated/exfoliated structure at higher concentration of nanoclay. The isothermal crystallization proceeds faster in the matrix polymer (iPP/PP-g-MA) than in nanocomposite samples. The results obtained for T m o suggest that the presence of nanoclay has induced a perfection of the formed crystals. The presence of C93A particles in PP leads to increase in crystallization peak temperature implying nucleating ability of clay particles, which was more pronounced in exfoliated than in mixed intercalated/exfoliated system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mülhaupt R, Stricker F. PP-compounds als konstruktionswerkstoffe: Eigenschaften der PP-compounds bei einsatz von mikro-bzw. Nanofüllstoffen = PP compounds as engineering materials. Kunststoffe. 1997;87:482–6.

    Google Scholar 

  2. Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater. 1996;8:29–35.

    Article  CAS  Google Scholar 

  3. Pinnavaia TJ, Lan T, Wang Z, Shi H, Kaviratna PD. Clay-reinforced epoxy nanocomposites: synthesis, properties, and mechanism of formation. In: Chow GM, Gonsalves KE, editors. Nanotechnology, vol. 622. ACS Symp Ser. Washington: American Chemical Society; 1996. p. 251.

  4. Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mülhaupt R. Poly(propylene)/organoclay nanocomposite formation: influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng. 2000;275:8–17.

    Article  CAS  Google Scholar 

  5. Zanetti M, Lomakin S, Camino G. Polymer layered silicate nanocomposites. Macromol Mater Eng. 2000;279:1–9.

    Article  CAS  Google Scholar 

  6. Ray SS, Okamoto M. Polymer/layered silicate nano-composites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  CAS  Google Scholar 

  7. Svoboda P, Zeng C, Wang H, Lee LJ, Tomasko DL. Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J Appl Polym Sci. 2002;85:1562–70.

    Article  CAS  Google Scholar 

  8. Alexsandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and use of a new class of materials. Mater Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  9. Grossiord N, Loos J, Koning CE. Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem. 2005;15:2349–52.

    Article  CAS  Google Scholar 

  10. Regev O, El Kati PNB, Loos J, Koning CE. Preparation of conductive nanotube-polymer composites using latex technology. Adv Mater. 2004;16(3):248–51.

    Article  CAS  Google Scholar 

  11. Wang K, Xiao Y, Na B, Tan H, Zhang Q, Fu Q. Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt in presence of oriented clay platelets. Polymer. 2005;46:9022–32.

    Article  CAS  Google Scholar 

  12. Varela C, Rosales C, Perera R, Matos M, Poirier T, Blunda J, et al. Functionalized polypropylenes in the compatibilization and dispersion of clay nanocomposites. Polym Compos. 2006;27:451–60.

    Article  CAS  Google Scholar 

  13. Giannelis EP, Krishnamoorti R, Manias E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv Polym Sci. 1999;138:107–47.

    Article  CAS  Google Scholar 

  14. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules. 1997;30:6333–8.

    Article  CAS  Google Scholar 

  15. Ma XY, Liang GZ, Liu HL, Fei JY, Huang Y. Novel intercalated nanocomposites of polypropylene/organic-rectorite/polyethylene-octene elastomer: rheology, crystallization kinetics, and thermal properties. J Appl Polym Sci. 2005;97:1915–21.

    Article  CAS  Google Scholar 

  16. Avella M, Cosco S, Di Lorenzo ML, Di Pace E, Errico ME. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80:131–6.

    Article  CAS  Google Scholar 

  17. Perrin-Sarazin F, Ton-That MT, Bureau MN, Denault J. Micro- and nano-structure in polypropylene/clay nanocomposites. Polymer. 2005;46:11624–34.

    Article  CAS  Google Scholar 

  18. Ton-That MT, Perrin-Sarazin F, Cole KC, Bureau MN, Denault J. Polyolefin nanocomposites: formulation and development. Polym Eng Sci. 2004;44:1212–9.

    Article  CAS  Google Scholar 

  19. Causin V, Marega C, Saini R, Marigo A, Ferrara G. Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007;90:849–57.

    Article  CAS  Google Scholar 

  20. Menyhárd A, Faludi G, Varga J. Beta-crystallisation tendency and structure of polypropylene grafted by maleic anhydride and its blends with isotactic polypropylene. J Therm Anal Calorim. 2008;93:937–45.

    Article  Google Scholar 

  21. Wang K, Xiao Y, Na B, Tan H, Zhang Q, Fu Q. Shear amplification and re-crystallization of isotactic polypropylene from an oriented melt in presence of oriented clay platelets. Polymer. 2005;46:9022–32.

    Article  CAS  Google Scholar 

  22. Bogoeva-Gaceva G, Raka L, Dimzoski B. Thermal stability of polypropylene/organo-clay nanocomposites produced in a single-step mixing procedure. Adv Comp Lett. 2008;17(5):161–4.

    Google Scholar 

  23. COST P12 Action. In: Bank of crystallisable polymers, “structuring of polymers”. 2006. Available via DIALOG. http://www.unirostock.de/fakult/manafak/physik/poly/COST_P12/.

  24. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A. 1962;66A:13–28.

    CAS  Google Scholar 

  25. Százdi L, Ábrányi Á, Pukánszky B, Vancso GJ. Morphology characterization of PP/clay nanocomposites across the length scales of the structural architecture. Macromol Mater Eng. 2006;291:858–68.

    Article  Google Scholar 

  26. Modesti M, Lorenzetti A, Bon D, Besco S. Effect of processing conditions on morphology and mechanical properties of compatibilized polypropylene nanocomposites. Polymer. 2005;46:10237–45.

    Article  CAS  Google Scholar 

  27. Varga J. Beta-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci. 2002;B41:1121–71.

    Article  CAS  Google Scholar 

  28. Tang XG, Yang W, Bao RY, Shan GF, Xie BH, Yang MB, et al. Effect of spatial confinement on the development of beta phase of polypropylene. Polymer. 2009;50:4122–7.

    Article  CAS  Google Scholar 

  29. Janevski A, Bogoeva-Gaceva G, Mäder E. DSC analysis of crystallization and melting behavior of polypropylene in model composites with glass and poly(ethylene terephthalate) fibers. J Appl Polym Sci. 1999;74:239–46.

    Article  CAS  Google Scholar 

  30. Avella M, Cosco S, Della Volpe G, Errico ME. Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv Polym Technol. 2005;24:132–44.

    Article  CAS  Google Scholar 

  31. Bogoeva-Gaceva G, Janevski A, Mäder E. Characterization of a maleic anhydride-modified polypropylene as an adhesion promoter for glass fiber composites. J Adhes Sci Technol. 2000;14:363–80.

    Article  CAS  Google Scholar 

  32. Zheng J, Lu X, Toh CL, Zheng TH, He C. Effects of clay on polymorphism of polypropylene in polypropylene/clay nanocomposites. J Polym Sci B. 2004;42:1810–6.

    Article  CAS  Google Scholar 

  33. Dasari A, Yu Z, Mai YW. Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules. 2007;40:123–30.

    Article  CAS  Google Scholar 

  34. Haggenmueller R, Fischer JE, Winey KI. Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules. 2006;39:2964–71.

    Article  CAS  Google Scholar 

  35. Trujillo M, Arnal ML, Muller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2007;40:6268–76.

    Article  CAS  Google Scholar 

  36. Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, Fonseca A, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 2004;4:353–6.

    Article  CAS  Google Scholar 

  37. Miltner HE, Grossiord N, Lu K, Loos J, Koning CE, Van Mele B. Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation. Macromolecules. 2008;41:5753–62.

    Article  CAS  Google Scholar 

  38. Lu K, Grossiord N, Koning CE, Miltner HE, Van Mele B, Loos J. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules. 2008;41(21):8081–5.

    Article  CAS  Google Scholar 

  39. COST Action P12. 2006. “Structuring of polymers”, COST-STSM-P12-02842. Scientific report. http://www.unirostock.de/fakult/manafak/physik/poly/COST_P12/.

  40. Bogoeva-Gaceva G, Janevski A, Mäder E. Characterization of a maleic anhydride-modified polypropylene as an adhesion promoter for glass fiber composites. J Adhes Sci Technol. 2000;14:363–80.

    Article  CAS  Google Scholar 

  41. Bogoeva-Gaceva G, Janevski A, Mäder E. Nucleation activity of glass fibers towards iPP evaluated by DSC and polarizing light microscopy. Polymer. 2001;42:4409–16.

    Article  CAS  Google Scholar 

  42. Kim B, Lee SH, Lee D, Ha B, Park J, Char K. Crystallization kinetics maleated polypropylene/clay hybrids. Ind Eng Chem Res. 2004;43:6082–9.

    Article  CAS  Google Scholar 

  43. Ma J, Zhang S, Qi Z, Li G, Hu Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci. 2002;83:1978–85.

    Article  CAS  Google Scholar 

  44. Hambir S, Bulakh N, Jog JP. Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym Eng Sci. 2002;42:1800–7.

    Article  CAS  Google Scholar 

  45. Somwangthanaroj A, Lee EC, Solomon MJ. Early stage quiescent and flow-induced crystallization of intercalated polypropylene nanocomposites by time-resolved light scattering. Macromololecules. 2003;36:2333–42.

    Article  CAS  Google Scholar 

  46. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A. Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules. 2002;35:2042–9.

    Article  CAS  Google Scholar 

  47. Varga J. Crystallization melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites, vol. 1. London: Chapmann & Hall; 1995. p. 56–115.

    Google Scholar 

  48. Xu W, Liang G, Zhai H, Tang Sh, Hang G, Pan WP. Preparation and crystallization behaviour of PP/PP-g-MAH/Org-MMT nanocomposite. Eur Polym J. 2003;39:1467–74.

    Article  CAS  Google Scholar 

  49. Xu W, Ge M, He P. Nonisothermal crystallization kinetics of polypropylene/montmorillonite nanocomposites. J Polym Sci B. 2002;40:408–14.

    Article  CAS  Google Scholar 

  50. Nowacki R, Monasse B, Piorkowska E, Galeski A, Haudin JM. Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear. Polymer. 2005;45:4877–92.

    Article  Google Scholar 

  51. Wang JL, Dong CM. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(epsilon-caprolactone)s with different arms. Polymer. 2006;47:3218–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from COST Action P12 “Structuring of Polymers,” COST-STSM-P12-02842 is greatly appreciated. Thanks are due to the Ministry of Education and Science of Republic of Macedonia for the financial support of the COST-related project activities. We thank Dr. Kangbo Lu from the Department of Chemical Engineering and Chemistry, Eindhoven University of Technology for TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Bogoeva-Gaceva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raka, L., Bogoeva-Gaceva, G. & Loos, J. Characterization of polypropylene/layered silicate nanocomposites prepared by single-step method. J Therm Anal Calorim 100, 629–639 (2010). https://doi.org/10.1007/s10973-009-0545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0545-y

Keywords

Navigation