Skip to main content
Log in

Dynamics of polymeric systems

Empirical formula of temperature dependence of relaxation time

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using dielectric and mechanical relaxation data of polymeric systems, an alternative formula is examined. The formula describes the experimental data with a high degree of accuracy, not received by the other model functions (Arrhenius and non-Arrhenius type) under investigation. The proposed formula gives the answer on questions concerning a supermolecular structure and the nature of the structural relaxation. New definition of the glass-transition temperature is proposed. It is shown how we should combine the results of different experimental methods to conduct an unambiguous analysis of polymeric systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McGrum NG, Read BE, Williams G. Anelastic and dielectric effects in polymeric solids. New York: Wiley; 1967.

    Google Scholar 

  2. Ward IM. Mechanical properties of solid polymers. London: Wiley; 1971.

    Google Scholar 

  3. Strobl G. The physics of polymers. Berlin: Springer; 1997.

    Google Scholar 

  4. Almond DP, Braddell OG, Harris B. On the analysis of mechanical relaxation at the glass transition in thermoset polymers. Polymer. 1992;33:2234–7.

    Article  CAS  Google Scholar 

  5. Stickel F, Fisher EW, Richert R. Dynamics of glass-forming liquids I. J Chem Phys. 1995;102:6251–8.

    Article  CAS  Google Scholar 

  6. Rault J. Origin of the Vogel–Fulcher–Tammann law in glass-forming materials. J Non-cryst Solids. 2000;271:177–217.

    Article  CAS  Google Scholar 

  7. Volegova IA, Konyukhova EV, Godovsky YuK. Dynamic mechanical characterization of molecular motion in a wide temperature range of various polymers containing propylene units. J Therm Anal Calorim. 2000;59:123–8. (and references therein).

    Article  CAS  Google Scholar 

  8. Struik LCE. The mechanical and physical ageing of semicrystalline polymers: 1. Polymer. 1987;28:1521–4.

    Article  CAS  Google Scholar 

  9. Danch A. Dynamic mechanical relaxation in the opaque and transparent PMP films. J Therm Anal. 1998;54:151–9.

    Article  CAS  Google Scholar 

  10. Danch A, Lohner K, Ungerank M, Stelzer F. Thermal analysis of the conformational disorder in SCLC polymers with rigid backbone. J Therm Anal. 1998;54:161–70.

    Article  CAS  Google Scholar 

  11. Danch A, Gadomski A. On the crystalline-amorphous supermolecular structure of PMP films cast from solution: experimental evidences and theoretical remarks. J Mol Liq. 2000;86:249–57.

    Article  CAS  Google Scholar 

  12. Danch A. Structure-dynamic relationship of side-chain liquid crystal polymer with rigid backbone. J Therm Anal Calorim. 1999;56:1097–9.

    Article  CAS  Google Scholar 

  13. Ngai KL, Roland CM. Development of cooperativity in the local segmental dynamics of PVA: synergy of thermodynamics and intermolecular coupling. Polymer. 2002;43:567–73.

    Article  CAS  Google Scholar 

  14. Cassalini R, Roland CM. Thermodynamical scaling of the glass transition dynamics. Phys Rev E. 2004;69:062501–3.

    Article  Google Scholar 

  15. Angell CA. Formation of glass from liquids and biopolymers. Science. 1995;267:1924–35.

    Article  CAS  Google Scholar 

  16. Angell CA, Green JL, Ito K, Lucas P, Richards BE. Glassformer fragilities and landscape excitation profiles by simple calorimetric and theoretical methods. J Therm Anal Calorim. 1999;57:717–36.

    Article  CAS  Google Scholar 

  17. Hodge IM. Strong and fragile liquids—a brief critique. J Non-cryst Solids. 1996;202:164–9.

    Article  CAS  Google Scholar 

  18. Mohanty U, Craig N, Fourkas JT. Relationship between dynamical and equilibrium characteristics of glass-forming polymeric liquids. Phys Rev E. 2001;64:010501–3.

    Article  CAS  Google Scholar 

  19. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.

    Article  CAS  Google Scholar 

  20. Danch A, Osoba W. Effect of supermolecular structure on transport phenomenon in polymeric membranes. Desalination. 2004;163:143–53.

    Article  CAS  Google Scholar 

  21. Danch A. Thermodynamics and structure of the ordered amorphous phase in polymer. J Therm Anal Calorim. 2005;79:205–8.

    Article  CAS  Google Scholar 

  22. Danch A, Osoba W. Stability of supermolecular structure below Tg—a role of free and specific volumes in local relaxations. J Therm Anal Calorim. 2006;84:331–7.

    Article  CAS  Google Scholar 

  23. Alba-Simionesco C, Fan J, Angell CA. Thermodynamic aspects of the glass transition phenomenon II. J Chem Phys. 1999;110:5262–72.

    Article  CAS  Google Scholar 

  24. Johari GP. An equilibrium supercooled liquid’s entropy in the Kauzmann and the third law exploration and a proposed experimental resolution. J Chem Phys. 2000;113:751–61.

    Article  CAS  Google Scholar 

  25. Rane S, Gujrati PD. Importance of interactions for free-volume and-group effects in polymers: An equilibrium lattice investigation. Phys Rev E. 2001;64:011801–9.

    Article  CAS  Google Scholar 

  26. Danch A. On the influence of the supermolecular structure on structural relaxation in the glass transition zone: free volume approach. Fibre Text East Eur. 2003;11:128–31.

    Google Scholar 

  27. Cangialosi D, Wuebbenhorst M, Schut H, van Veen A, Picken SJ. Dynamics of polycarbonate far below the glass transition temperature. Phys Rev B. 2004;69:134206–9.

    Article  Google Scholar 

  28. Danch A, Osoba W. Stability of supermolecular structure below Tg—a role of free and specific volumes in local relaxations. J Therm Anal Calorim. 2006;84:79–83.

    Article  CAS  Google Scholar 

  29. Cohen MH, Grest GH. Liquid-glass transition, a free-volume approach. Phys Rev B. 1979;20:1077–98.

    Google Scholar 

  30. Danch A, Laggner P, Degovics G, Sęk D, Stelzer F. Thermodynamic and structure investigation of new side-chain liquid crystal polymer. In: Tykarska M, Dąbrowski R, Zieliński J, editors. Liquid crystals: chemistry and structure. Singapore: Academic Press; 1998. p. 271–5.

    Google Scholar 

Download references

Acknowledgements

The fruitful discussions with Prof. S. Rzoska (Silesian University, Katowice, Poland), and with Prof. A. Gałęski (Center of Molecular and Macromolecular Studies, PAN, Łódź, Poland) on the constrained amorphous phase in polymeric systems, and the remarks (S.Rz), which helped the author to improve the manuscript, are greatly acknowledged. The opinion written by Prof. R. Hołyst (Inst. Phys. Chem., PAN, Warszawa, Poland) is acknowledged too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Danch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danch, A.L. Dynamics of polymeric systems. J Therm Anal Calorim 98, 601–607 (2009). https://doi.org/10.1007/s10973-009-0511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0511-8

Keywords

Navigation