Skip to main content
Log in

Molecular stress function theory and analysis of branching structure in industrial polyolefins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Despite substantial progress in analytical techniques for polymer characterization, a realistic picture of branching structure in industrial polymers still remains at large. Using a number of assumptions, structure-based constitutive models can distinguish between linear and branched structures in a qualitative sense. More detail on branching architecture, such as the number and length of side chains, the sequence in which they exist on the backbone and their contribution to polymer chain relaxation is more or less unknown. In the current study, elongational behavior of four commercial polyolefins is compared using the predictions of the MSF (molecular stress function) theory. The results will then be used to analyze the branching in a group of strain-hardening polypropylenes synthesized using single site catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Field GJ, Micic P, Bhattacharya SN. Melt strength and film bubble instability of LLDPE/LDPE blends. Polym Int. 1999;48:461–6.

    Article  CAS  Google Scholar 

  2. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, et al. Well-defined, model long-chain branched polyethylene. 2. Melt rheological behavior. Macromolecules. 2002;35:3066–75.

    Article  CAS  Google Scholar 

  3. Hussein IA. Influence of composition distribution and branch content on the miscibility of m-LLDPE and HDPE blends: rheological investigation. Macromolecules. 2003;36:2024–31.

    Article  CAS  Google Scholar 

  4. Stephens CH, Hiltner A, Baer E. Phase behavior of partially miscible blends of linear and branched polyethylenes. Macromolecules. 2003;36:2733–41.

    Article  CAS  Google Scholar 

  5. Mieda N, Yamaguchi M. Anomalous rheological response for binary blends of linear polyethylene and long chain-branched polyethylene. Adv Polym Tech. 2008;26:173–81.

    Article  Google Scholar 

  6. Liu C, Wang J, He J. Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE. Polymer. 2002;43:3811–8.

    Article  CAS  Google Scholar 

  7. Stadlbauer M, Ernst E. Polypropylene foam. European Patent 2008; EP1900764A1.

  8. Rätzsch M, Hesse A, Bucka H, Reichelt N, Panzer U, Bühler K. Polyolefinschaumstoffe hoher Wärmeformbeständigkeit. European Patent 1998; EP0879844A1.

  9. Stadlbauer M, Kirchberger M. A polyolefin foam. European Patent 2007; EP1754744A1.

  10. Stadlbauer M, Kirchberger M, Ernst E. Extrusion coated substrate. European Patent 2008; EP1967547A1.

  11. Hesse A, Panzer U, Paulik C, Wolfsberger A, Kirchberger M, Niedersüss P. Polyolefinfolien und Polyolefinbeschichtungen von Substraten. European Patent 1999; EP0947551A1.

  12. Stadlbauer M, Ernst E, Niedersüss P. Blown film of polypropylene. European Patent 2008; EP1903070A1.

  13. Ernst E, Stadlbauer M. Multi-branched polypropylene. European Patent EP 2007; 1847555.

  14. de Gennes PG. Reptation of polymer chains in presence of fixed obstacles. J Chem Phys. 1971;55:572–9.

    Article  Google Scholar 

  15. Doi M, Edwards SF. Theory of polymer dynamics. Oxford: Oxford University Press; 1986.

    Google Scholar 

  16. Tsenoglou C. Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules. 1991;24:1762–7.

    Article  CAS  Google Scholar 

  17. van Ruymbeke E, Keunings R, Stéphenne V, Hagenaars A, Bailly C. Evaluation of reptation models for predicting the linear viscoelastic properties of linear entangled polymers. Macromolecules. 2002;35:2689–99.

    Article  Google Scholar 

  18. Hepperle J, Münstedt H, Haug PK, Eisenbach D. Rheological properties of branched polystyrenes: linear viscoelastic behavior. Rheol Acta. 2005;45:151–63.

    Article  CAS  Google Scholar 

  19. Urakawa O, Takahashi M, Masuda T, Golshan Ebrahimi N. Damping functions and chain relaxation in uniaxial and biaxial elongation: comparison with the Doi-Edwards theory. Macromolecules. 1995;28:7196–201.

    Article  CAS  Google Scholar 

  20. Pearson DS, Kiss AD, Fetters LJ, Doi M. Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol. 1989;33:517–35.

    Article  CAS  Google Scholar 

  21. Ianniruberto G, Marrucci G. A simple constitutive equation for entangled polymers with chain stretch. J Rheol. 2001;45:1305–18.

    Article  CAS  Google Scholar 

  22. Fang G, Kröger M, Öttinger HC. A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flow. J Rheol. 2000;44:1293–317.

    Article  CAS  Google Scholar 

  23. Mead DW, Larson RG, Doi M. A molecular theory for fast flows of entangled polymers. Macromolecules. 1998;31:7895–914.

    Article  CAS  Google Scholar 

  24. Wagner MH, Stephenson SE. The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions. J Rheol. 1979;23:489–504.

    Article  CAS  Google Scholar 

  25. Wagner MH. The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model. Rheol Acta. 1990;29:594–603.

    Article  CAS  Google Scholar 

  26. Marrucci G, de Cindio B. The stress relaxation of molten PMMA. Rheol Acta. 1980;19:68–75.

    Article  CAS  Google Scholar 

  27. Wagner MH, Rubio P, Bastian H. The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release. J Rheol. 2001;45:1387–412.

    Article  CAS  Google Scholar 

  28. Marrucci G, Grizzutti N. The free energy function of the Doi-Edwards theory: analysis of instabilities in stress relaxation. J Rheol. 1983;27:433–50.

    Article  CAS  Google Scholar 

  29. Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Languche F. The strain hardening behaviour of linear and long-chain-branched polyolefin melts. Rheol Acta. 2000;39:97–109.

    Article  CAS  Google Scholar 

  30. Wagner MH, Yamaguchi M, Takahashi M. Quantitative assessment of strain hardening of LDPE melts by MSF model. J Rheol. 2003;47:779–93.

    Article  CAS  Google Scholar 

  31. Wagner MH, Hepperle J, Münstdet H. Relating molecular structure of model branched polystyrene melts to strain-hardening by molecular stress function theory. J Rheol. 2004;48:489–503.

    Article  CAS  Google Scholar 

  32. Ohnishi R, Fujimura T, Tsunori R, Sugita Y. A new method for producing high melt strength poly(propylene) with reactive extrusion. Macromol Mater Eng. 2005;290:1127–234.

    Article  Google Scholar 

  33. Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, et al. Long-chain branched polypropylenes by electron beam irradiation and their properties. Macromolecules. 2004;37:9465–72.

    Article  CAS  Google Scholar 

  34. Wagner MH, Kheirandish S, Yamaguchi M. Quantitative analysis of melt elongational behavior of LDPE/LLDPE blends. Rheol Acta. 2005;44:198–218.

    Article  Google Scholar 

  35. Münstedt H, Kurzbeck S, Stange J. Importance of elongational properties of polymer melts for film blowing and thermoforming. 2006;46:1190–5.

    Google Scholar 

  36. Sadeghi F, Ajji A, Carreau PJ. Analysis of row nucleated lamellar morphology of polypropylene obtained from the cast film process: effect of melt and process conditions. Polym Eng Sci. 2007;47:1170–8.

    Article  CAS  Google Scholar 

  37. Sadeghi F, Ajji A, Carreau PJ. Microporous membranes obtained from polypropylene blends superior with permeability properties. J Polym Sci B Polym Phys. 2008;46:148–57.

    Article  CAS  Google Scholar 

  38. Stadler FJ, Nishioka A, Stange J, Koyama K, Mpünstedt H. Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta. 2007;46:1003–12.

    Article  CAS  Google Scholar 

  39. Rätzsch M, Bucka H, Hesse A, Panzer U, Reichelt N. Strukturisomere Poly(alkylethylene). European Patent 1997; EP0787750A2.

  40. Wagner MH, Kheirandish S, Stange J, Münstedt H. Modeling elongational viscosity of blends of linear and long-chain branched polypropylenes. 2006;46:211–22.

    CAS  Google Scholar 

  41. Wagner MH, Kheirandish S, Koyama K, Nishioka A, Minegishi A, Takahashi T. Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheol Acta. 2005;44:235–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Kheirandish.

Additional information

Dedicated to Professor Manfred H. Wagner on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kheirandish, S., Stadlbauer, M. Molecular stress function theory and analysis of branching structure in industrial polyolefins. J Therm Anal Calorim 98, 629–637 (2009). https://doi.org/10.1007/s10973-009-0507-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0507-4

Keywords

Navigation