Skip to main content
Log in

The role of multi-walled carbon nanotubes in shear enhanced crystallization of isotactic poly(1-butene)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flow-induced crystallization behavior of nanocomposites, containing isotactic poly(1-butene) (PB) and functionalized multi-walled carbon nanotubes (MWNT), was investigated. Three different MWNT concentrations (0.1, 1, 5 wt%) were used to prepare the nanocomposites. Effects of MWNT and shear flow on the crystallization parameters were evaluated separately. Rheological measurements based on oscillatory shear revealed induction time and crystallization half-time at the quiescent state, where both parameters exhibited the nucleating effect of MWNT on PB. Rheological measurements based on steady-state shear flow and short-time shear flow revealed the evolution of molecular orientation, which was studied in both PB and its nanocomposites. A small increase in crystallization kinetic was recorded in PB under shear having moderate values of the Weissenberg (We) number. On the other hand, a dramatic synergistic effect of MWNT and shear was detected under the same shear conditions for nanocomposites. The optical microscopic images exhibited a clear transition from isotropic to row-like morphology in the case of nanocomposites under shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Keller A, Kolnaar HWH. Flow-induced orientation and structure formation. In: Meijer HEH, editor. Materials science and technology: a comprehensive treatment. Vol. 18: Processing of polymers. New York: Wiley-VCH; 1997. p. 191–268.

    Google Scholar 

  2. Eder G, Janeschitz-Kriegl H. Crystallization. In: Meijer HEH, editor. Materials science and technology: a comprehensive treatment. Vol. 18: Processing of polymers. New York: Wiley-VCH; 1997. p. 269–342.

    Google Scholar 

  3. Seki M, Thurman DW, Oberhauser JP, Kornfield JA. Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap. Macromolecules. 2002;35:2583–94.

    Article  CAS  Google Scholar 

  4. Janeschitz-Kriegl H, Ratajski E, Stadlbauer M. Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta. 2003;42:355–64.

    Article  CAS  Google Scholar 

  5. Hsiao BS, Yang L, Somani RH, Avila-Orta CA, Zhu L. Unexpected shish-kebab structure in a sheared polyethylene melt. Phys Rev Lett. 2005;94:117802–6.

    Article  Google Scholar 

  6. Hsiao BS. Role of chain entanglement network on formation of flow-induced crystallization precursor structure. Lect Notes Phys. 2007;714:133–49.

    Article  CAS  Google Scholar 

  7. Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, et al. Molecular basis of the shish-kebab morphology in polymer crystallization. Science. 2007;316:1014–7.

    Article  CAS  Google Scholar 

  8. Mykhaylyk OO, Chambon P, Graham RS, Fairclough JPA, Olmsted PD, Ryan AJ. The specific work of flow as a criterion for orientation in polymer crystallization. Macromolecules. 2008;41:1901–4.

    Article  CAS  Google Scholar 

  9. Vleeshouwers S, Meijer HEH. A rheological study of shear induced crystallization. Rheol Acta. 1996;35:391–9.

    Article  CAS  Google Scholar 

  10. Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, et al. Structure development during shear flow induced crystallization of i-PP: in situ small angle X-ray scattering study. Macromolecules. 2000;33:9385–94.

    Article  CAS  Google Scholar 

  11. Agarwal PK, Somani RH, Weng W, Mehta A, Yang L, Ran S, et al. Shear-induced crystallization in novel long chain branched polypropylenes by in situ rheo-SAXS and–WAXD. Macromolecules. 2003;36:5226–35.

    Article  CAS  Google Scholar 

  12. Elmoumni A, Winter HH, Waddon AJ, Fruitwala H. Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules. 2003;36:6453–61.

    Article  CAS  Google Scholar 

  13. Elmoumni A, Winter HH. Large strain requirements for shear-induced crystallization of isotactic polypropylene. Rheol Acta. 2006;45:793–801.

    Article  CAS  Google Scholar 

  14. Bove L, Nobile MR. Shear-induced crystallization of isotactic poly(1-butene). Macromol Symp. 2002;185:135–47.

    Article  CAS  Google Scholar 

  15. Acierno S, Palomba B, Winter HH, Grizzuti N. Effect of molecular weight on the flow-induced crystallization of isotactic poly(1-butene). Rheol Acta. 2003;42:243–50.

    CAS  Google Scholar 

  16. Baert J, Van Puyvelde P. Effect of molecular and processing parameters on the flow-induced crystallization of poly-1-butene. Part 1: Kinetics and morphology. Polymer. 2006;47:5871–9.

    Article  CAS  Google Scholar 

  17. Baert J, Van Puyvelde P, Langouche F. Flow-induced crystallization of PB-1: from the low shear rate region up to processing rates. Macromolecules. 2006;39:9215–22.

    Article  CAS  Google Scholar 

  18. Dai SC, Qi F, Tanner RI. Strain and strain-rate formulation for flow-induced crystallization. Polym Eng Sci. 2006;46:659–69.

    Article  CAS  Google Scholar 

  19. Jay F, Haudin JM, Monasse B. Shear-induced crystallization of polypropylenes: effect of molecular weight. J Mater Sci. 1999;34:2089–102.

    Article  CAS  Google Scholar 

  20. Lagasse RR, Maxwell B. An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci. 1976;16:189–99.

    Article  CAS  Google Scholar 

  21. Balzano L, Rastogi S, Peters GWM. Flow induced crystallization in isotactic polypropylene-1, 3:2, 4-bis(3, 4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation. Macromolecules. 2008;41:399–408.

    Article  CAS  Google Scholar 

  22. Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, de Jeu WH. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer. 2008;49:3076–83.

    Article  CAS  Google Scholar 

  23. Garcia-Gutierrez MC, Hernandez JJ, Nogales A, Panine P, Rueda DR, Ezquerra TA. Influence of shear on the templated crystallization of poly(butylenes terephthalate)/single wall carbon nanotube nanocomposites. Macromolecules. 2008;41:844–51.

    Article  CAS  Google Scholar 

  24. Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E. On the kinetics of shear induced crystallization in polypropylene. Int Polym Proc. 1993;8:236–44.

    CAS  Google Scholar 

  25. Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, et al. Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer. 2000;42:5247–56.

    Article  Google Scholar 

  26. Somani RH, Yang L, Zhu L, Hsiao BS. Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer. 2005;46:8587–623.

    Article  CAS  Google Scholar 

  27. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, et al. Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer. 2003;44:2373–7.

    Article  CAS  Google Scholar 

  28. Anand KA, Agarwal US, Joseph R. Carbon nanotubes induced crystallization of poly(ethylene terephthalate). Polymer. 2006;47:3976–80.

    Article  Google Scholar 

  29. Valentini L, Biagiotti J, Kenny JM, Santucci S. Morphological characterization of single-walled carbon nanotubes-PP composites. Compos Sci Technol. 2003;63:1149–53.

    Article  CAS  Google Scholar 

  30. Kelarakis A, Yoon K, Sics I, Somani RH, Chen X, Hsiao BS, et al. Shear-induced orientation and structure development in isotactic polypropylene melt containing modified carbon nanofibers. J Macromol Sci Phys. 2006;45:247–61.

    Article  CAS  Google Scholar 

  31. Larin B, Marom G, Avila-Orta CA, Somani RH, Hsiao BS. Orientated crystallization in discontinuous aramid fiber/isotactic polypropylene composites under shear flow conditions. J Appl Polym Sci. 2005;98:1113–8.

    Article  CAS  Google Scholar 

  32. Larin B, Avila-Orta CA, Somani RH, Hsiao BS, Marom G. Combined effect of shear and fibrous fillers on orientation-induced crystallization in discontinuous aramid fiber/isotactic polypropylene composites. Polymer. 2008;49:295–302.

    Article  CAS  Google Scholar 

  33. Bove L, Nobile MR. Shear flow effects on polymer melts crystallization: kinetic features. Macromol Symp. 2002;180:169–80.

    Article  CAS  Google Scholar 

  34. Coppola S, Acierno S, Grizzuti N, Vlassopoulos D. Viscoelastic behavior of semicrystalline thermoplastic polymers during the early stages of crystallization. Macromolecules. 2006;39:1507–14.

    Article  CAS  Google Scholar 

  35. Acierno S, Grizzuti N, Winter HH. Effects of molecular weight on the isothermal crystallization of poly(1-butene). Macromolecules. 2002;35:5043–8.

    Article  CAS  Google Scholar 

  36. Azzurri F, Alfonso GC. Lifetime of shear-induced crystal nucleation precursors. Macromolecules. 2005;38:1723–8.

    Article  CAS  Google Scholar 

  37. Hadinata C, Gabriel C, Rüllmann M, Laun MJ. Comparison of shear-induced crystallization behaviour of PB-1 samples with different molecular weight distribution. J Rheol. 2005;49:327–49.

    Article  CAS  Google Scholar 

  38. Hadinata C, Gabriel C, Rüllmann M, Kao N, Laun MJ. Shear-induced crystallization of PB-1 up to processing-relevant shear rates. Rheol Acta. 2006;45:539–46.

    Article  CAS  Google Scholar 

  39. Natta G, Corradini P, Danusso F, Mantica E, Mazzanti G, Pino P, et al. Crystalline high polymers of α-olefins. J Am Chem Soc. 1955;77:1708–10.

    Article  CAS  Google Scholar 

  40. Petraccone V, Pirozzi B, Frasci A, Corradini P. Polymorphism of isotactic poly-a-butene: conformational analysis of the chain and crystalline structure of form 2. Eur Polym J. 1976;12:323–7.

    Article  CAS  Google Scholar 

  41. Natta G, Corradini P, Bassi IW. Crystal structure of isotactic poly-alpha-butene. Nuovo Cimento. 1960;15:52–67.

    CAS  Google Scholar 

  42. Lotz B, Mathieu C, Thierry A, Lovinger AJ, De Rosa C, De Ballesteros OR, et al. Chirality constraints in crystal-crystal transformations: isotactic poly(1-butene) versus syndiotactic polypropylene. Macromolecules. 1998;31:9253–7.

    Article  CAS  Google Scholar 

  43. Azzurri F, Flores A, Alfonso GC, Sics I, Hsiao BS, Balta Calleja FJ. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part II: Correlations to microstructure. Polymer. 2003;44:1641–5.

    Article  CAS  Google Scholar 

  44. Marand H, Xu J, Srinivas S. Determination of the equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman–Weeks extrapolations. Macromolecules. 1998;31:8219–29.

    Article  CAS  Google Scholar 

  45. Xu J, Srinivas S, Marand H, Agarwal P. Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene. Macromolecules. 1998;31:8230–42.

    Article  CAS  Google Scholar 

  46. Nakamura K, Aoike T, Usaka K, Kanamoto T. Phase Transformation in poly(1-butene) upon drawing. Macromolecules. 1999;32:4975–82.

    Article  CAS  Google Scholar 

  47. Nobile MR, Bove L, Somma E, Kruszelnicka I, Sterzynski T. Rheological and structure investigation of shear-induced crystallization of isotactic polypropylene. Polym Eng Sci. 2005;45:153–62.

    Article  CAS  Google Scholar 

  48. Somma E, Valentino O, Titomanlio G, Ianniruberto G. Parallel superposition in entangled polydisperse polymer melts: Experiments and theory. J Rheol. 2007;51:987–1005.

    Article  CAS  Google Scholar 

  49. Ferry JD. Viscoelastic properties of polymers. Wiley, New York; 1980.

  50. Kelarakis A, Mai SM, Booth C, Ryan AJ. Can rheometry measure crystallization kinetics? A comparative study using block copolymers. Polymer. 2005;46:2739–47.

    Article  CAS  Google Scholar 

  51. Bove L, Nobile MR, Azzurri F, Alfonso GC. Shear-induced crystallization of isotactic polyolefins. In: The 17th annual meeting of the Polymer Processing Society (PPS-17), Montréal, 21–24 May 2001.

  52. Iervolino R. Rheology and morphology of the flow induced crystallization in polymers. PhD thesis. University of Salerno, Italy; 2009.

  53. Pötschke P, Fornes TD, Paul R. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 2002;43:3247–55.

    Article  Google Scholar 

  54. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D. Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer. 2004;45:8863–70.

    Article  Google Scholar 

  55. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI. Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules. 2004;37:9048–55.

    Article  CAS  Google Scholar 

  56. Winter HH, Mours M. Rheology of polymers near liquid-solid transitions. In: Neutron spin echo spectroscopy viscoelasticity rheology. Advances in Polymer Science, vol. 134. Berlin, Germany: Springer; 1997, p. 165–234.

  57. Liu C, Zhang J, He J, Hu G. Gelation in carbon nanotube/polymer composites. Polymer. 2003;44:7529–32.

    Article  CAS  Google Scholar 

  58. Valentino O. The effect of surface treatment and matrix properties on CNT/polymer composites. PhD thesis. University of Salerno, Italy; 2008.

  59. Fu Q, Heck B, Strobl G, Thomann Y. A temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization? Macromolecules. 2001;34:2502–11.

    Article  CAS  Google Scholar 

  60. Baumgartel M, Winter HH. Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta. 1989;28:511–9.

    Article  Google Scholar 

  61. van Meerveld J, Peters GWM, Hutter M. Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta. 2004;44:119–34.

    Article  CAS  Google Scholar 

  62. Nobile MR, Cocchini F. A generalized relation between MWD and relaxation time spectrum. Rheol Acta. 2008;47:509–19.

    Article  CAS  Google Scholar 

  63. Balzano L, Kukalyekar N, Rastogi S, Peters GWM, Chadwick JC. Crystallization and dissolution of flow-induced precursors. Phys Rev Lett 2008; 100:1–4.

    Google Scholar 

  64. Pogodina NV, Lavrenko VP, Srinivas S, Winter HH. Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear induced crystallization. Polymer. 2001;42:9031–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The US team acknowledges the financial support of this work by National Science Foundation (DMR-0405432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rossella Nobile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iervolino, R., Somma, E., Nobile, M.R. et al. The role of multi-walled carbon nanotubes in shear enhanced crystallization of isotactic poly(1-butene). J Therm Anal Calorim 98, 611–622 (2009). https://doi.org/10.1007/s10973-009-0505-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0505-6

Keywords

Navigation