Skip to main content
Log in

Thermal change of organic light-emitting ALQ3 thin films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A series of Alq3 thin films with the thicknesses of 50, 100, and 200 nm was deposited on Si substrates at room temperature using the thermal evaporation method. The thermal crystallization process of Alq3 thin films, especially 50 nm thick films, was successfully examined using high-temperature X-ray diffraction (HT-XRD) with the in-plane scan mode. Film thickness, density, and changes in surface roughness while heating were determined using X-ray reflectometry (XRR). The decreased density and increased surface roughness, which were accompanied by sublimation, indicate the instability of the Alq3 film. Thus, thermal instability is a major factor for device failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tang CW, VanSlyke SA. Organic electroluminescent diodes. Appl Phys Lett. 1987;51:913–5.

    Article  CAS  Google Scholar 

  2. Aziz H, Popovic ZD. Degradation phenomena in small-molecule organic light-emitting devices. Chem Mater. 2004;16:4522–32.

    Article  CAS  Google Scholar 

  3. Xu MS, Xu JB. Nanoscale study on origins of the bright clusters in/on moisture-exposed tris(8-hydroxyquinoline) aluminum thin films. Synth Met. 2004;145:177–82.

    Article  CAS  Google Scholar 

  4. Xu MS, Xu JB, Lou EZ, Xie Z. Nanoscale investigation on nature of dark hole in moisture-exposed tris(8-hydroxyquinoline) aluminum thin films. Chem Phys Lett. 2003;374:656–60.

    Article  CAS  Google Scholar 

  5. Papadimitrakopoulos F, Zhang XM, Thomsen DL III, Higginson KA. A chemical failure mechanism for aluminum(III) 8-hydroxyquinoline light-emitting devices. Chem Mater. 1996;8:1363–5.

    Article  CAS  Google Scholar 

  6. Papadimitrakopoulos F, Zhang XM. Environmental stability of aluminum tris(8-hydroxyquinoline) (Alq3) and its implications in light emitting devices. Synth Met. 1997;85:1221–4.

    Article  CAS  Google Scholar 

  7. Higginson KA, Zhang XM, Papadimitrakopoulos F. Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3). Chem Mater. 1998;10:1017–20.

    Article  CAS  Google Scholar 

  8. Wang MH, Sawada Y, Saito K, Horie S, Uchida T, Ohtsuka M, et al. Thermal change of Alq3, tris(8-hydroxyquinolinato) aluminum(III) studied by TG and XRD-DSC. J Therm Anal Calorim. 2007;89:363–6.

    Article  Google Scholar 

  9. Xu MS, Xu JB. Visualization of thermally-activated degradation pathways of tris(8-hydroxyquinoline) aluminum thin films for electroluminescence application. Thin Solid Film. 2005;491:317–22.

    Article  CAS  Google Scholar 

  10. Jian ZA, Luo YZ, Chung JM, Tang SJ, Kuo MC, Shen JL, et al. Effects of isomeric transformation on characteristics of Alq3 amorphous layers prepared by vacuum deposition at various substrate temperatures. J Appl Phys. 2007;101:123708-1–6.

    Google Scholar 

  11. Kajimoto N, Manaka T, Iwamoto M. Decay process of a large surface potential of Alq3 films by heating. J Appl Phys. 2006;100:053707-1–6.

    Article  Google Scholar 

  12. Takahashi S, Taniguchi M, Omote K, Wakabayashi N, Tanaka R, Yamagishi A. First observation of in-plane X-ray diffraction arising from a single layered inorganic compound film by a grazing incidence X-ray diffraction system with a conventional laboratory X-ray source. Chem Phys Lett. 2002;352:213–9.

    Article  CAS  Google Scholar 

  13. Lee YJ, Lee H, Byun Y, Song S, Kim JE, Eom D, et al. Study of thermal degradation of organic light emitting device structures by X-ray scattering. Thin Solid Film. 2007;515:5674–7.

    Article  CAS  Google Scholar 

  14. Andrew N, Benjamin WM, James O, Celesta F, Keith MM, Patrick GH, et al. X-ray and neutron reflectometry study of glow-discharge plasma polymer films. Langmuir. 2006;22:453–8.

    Article  Google Scholar 

  15. Mobus M, Karl N. The growth of organic thin films on silicon substrates studied by X-ray reflectometry. Thin Solid Film. 1992;215:213–7.

    Article  Google Scholar 

  16. Matyi RJ, Hatzistergos MS, Lifshin E. X-ray reflectometry analyses of chromium thin films. Thin Solid Film. 2006;515:1286–93.

    Article  CAS  Google Scholar 

  17. Parratt LG. Surface studies of solids by total reflection of X-rays. Phys Rev. 1954;95:359–69.

    Article  Google Scholar 

  18. Curry RJ, Gillin WP, Clarkson J, Batchelder DN. Morphological study of aluminum tris(8-hydroxyquinoline) thin films using infrared and Raman spectroscopy. J Appl Phys. 2002;92:1902–5.

    Article  CAS  Google Scholar 

  19. Kaji H, Kusaka Onoyama YG, Horii F. CP/MAS 13C NMR characterization of the isomeric states and intermolecular packing in tris(8-hydroxyquinoline) aluminum(III) (Alq3). J Am Chem Soc. 2006;128:4292–7.

    Article  CAS  Google Scholar 

  20. Uchida T, Mimura T, Kaneta S, Ichihara M, Ohtsuka M, Otomo T. Transparent organic light-emitting devices fabricated by Cs-incorporated RF magnetron sputtering deposition. Jpn J Appl Phys. 2005;44:5939–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for financial support for our High-Tech Research Center Project entitled Development of Flexible Transparent Light Emitting Display Devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Sawada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, MH., Konya, T., Yahata, M. et al. Thermal change of organic light-emitting ALQ3 thin films. J Therm Anal Calorim 99, 117–122 (2010). https://doi.org/10.1007/s10973-009-0486-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0486-5

Keywords

Navigation