Skip to main content
Log in

Ab initio and DFT calculations of three-body interactions in chiral mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to elucidate the enthalpic stabilization of a 2-methyl-1,4-butanediol system (2M14BD) and a 3-chloro-1,2-propanediol (3C12PDO) system by mixing of each (R)- and (S)-enantiomers, three-body interaction energies are obtained by PW91/6-311G** and MP2/6-311G** level calculations. The differences between homochiral interactions and heterochiral interactions in a 3C12PDO system are found. On the other hand, in 2M14BD systems, very slight differences can be observed between the three-body interaction energies of the three ternary systems. Further, the relationship between excess enthalpies and chiral interactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takagi S, Fujishiro R, Amaya M. Heats of mixing of optical isomers in solution: calorimetric evidence of stereospecific effect. J Chem Soc Chem Commun. 1968;10:480.

    Google Scholar 

  2. Atik Z, Ewing MB, McGlashan ML. Chiral discrimination in liquids. Excess molar volumes of (1−x)A++xA−, where A denotes limonene, fenchone, and α-methylbenzylamine. J Phys Chem. 1981;85:3300–3.

    Article  CAS  Google Scholar 

  3. Atik Z, Ewing MB, McGlashan ML. Chiral discrimination in liquids II. Excess molar enthalpies of {(1−x)A++xA−}, where A denotes fenchone or α-methylbenzylamine. J Chem Thermodyn. 1983;15:159–63.

    Article  CAS  Google Scholar 

  4. Fujisawa M, Matsushita T, Khan MA, Kimura T. Excess molar heat capacities of (L-glutamine aqueous solution + D-glutamine aqueous solution) at temperatures between 293.15 and 303.15 K. J Therm Anal Cal. 2005;82(2):319–21.

    Article  CAS  Google Scholar 

  5. Matthews ME, Atkinson I, Presswala L, Najjar O, Gerhardsteiny N, Wei R, et al. Dielectric classification of d-and l-amino acids by thermal and analytical methods. J Therm Anal Cal. 2008;93(1):281–7.

    Article  CAS  Google Scholar 

  6. Presswala L, Matthews ME, Atkinson I, Najjar O, Gerhardstein N, Moran J, et al. Discovery of bound and unbound waters in crystalline amino acids revealed by thermal analysis. J Therm Anal Cal. 2008;93(1):295–300.

    Article  CAS  Google Scholar 

  7. Kimura T, Matsushita T, Ueda K, Aktar F, Matsuda T, Kamiyama T, et al. Enthalpic changes on mixing two couples of S- and R-enantiomers of heptane-2-ol, octane-2-ol, nonane-2-ol, 3-chloro-propane-1,2-diol, 2-methyl-1,4-butanediol at 298.15 K. Thermochica Acta. 2004;414:209–14.

    Article  CAS  Google Scholar 

  8. Kimura T, Khan MA, Ishii M, Ueda K, Matsushita T, Kamiyama T, et al. Enthalpic changes on mixing two couples of S- and R-enantiomers of benzyl-(1-phenyl-ethyl)-amine, 1-phenylethylamine, 1-phenyl-ethanol, butyric acid oxiranylmethyl ester, 4-methyl-[1,3]dioxolan-2-one, 2-chloro-methyloxirane and 3-hydroxyisobutyric acid methyl ester at T=298.15 K. J Chem Thermodyn. 2006;38(8):1042–8.

    Article  CAS  Google Scholar 

  9. Kimura MAK, Kamiyama T. Enthalpies of mixing and apparent molar volumes of ethanol solution of chiral dicarboxylic acids. J Therm Anal Cal. 2006;85(3):559–65.

    Article  CAS  Google Scholar 

  10. Frisch MJ et al. Gaussian 03, revision D.01, user’s reference manual. 2nd ed. Wallingford, CT: Gaussian, Inc.; 2005.

  11. Tsuzuki S, Hujou H, Nagawa Y, Goto M, Hiratani K. Cooperative enhancement of water binding to crownophane by multiple hydrogen bonds: analysis by high level ab initio calculations. J Am Chem Soc. 2001;123:4255–8.

    Article  CAS  Google Scholar 

  12. Mierzwicki K, Latajka Z. Basis set superposition error in N-body clusters. Chem Phys Lett. 2003;380:654–64.

    Article  CAS  Google Scholar 

  13. Solimannejad M, Alkorta I, Elguero J. A computational study of dimers and trimers of hypohalous acids. Chem Phys Lett. 2008;454:201–6.

    Article  CAS  Google Scholar 

  14. Mayer I, Vibók Á, Halász G, Valiron P. A BSSE-free SCF algorithm for intermolecular interactions. 111. Generalization for three-body systems and for using bond functions. Int J Quantum Chem. 1998;57(5):1049–55.

    Google Scholar 

  15. Parra RD, Zeng XC. Hydrogen bonding and cooperative effects in mixed dimers and trimers of methanol and trifluoromethanol: an ab initio study. J Chem Phys. 1999;110:6329–38.

    Article  CAS  Google Scholar 

  16. Masella M, Greshb N, Flament J-P. A theoretical study of nonadditive effects in four water tetramers. J Chem Soc Faraday Trans. 1998;94:2745–53.

    Article  CAS  Google Scholar 

  17. Li X, Liang J. Geometric cooperativity and anticooperativity of three-body interactions in native proteins. Proteins. 2005; 60:46–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujisawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujisawa, M., Kimura, T. Ab initio and DFT calculations of three-body interactions in chiral mixtures. J Therm Anal Calorim 99, 71–73 (2010). https://doi.org/10.1007/s10973-009-0455-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0455-z

Keywords

Navigation