Skip to main content
Log in

Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biomolecules, methylamine and alanine, found associated with natural jarosite samples peaked the interest of astrobiologists and planetary geologists. How the biomolecules are associated with jarosite remains unclear although the mechanism could be important for detecting biosignatures in the rock record on Earth and other planets. A series of thermal gravimetric experiments using synthetic K-jarosite and Na-jarosite were conducted to determine if thermal analysis could differentiate physical mixtures of alanine and methylamine with jarosite from samples where the methylamine or alanine was incorporated into the synthesis procedure. Physical mixtures and synthetic experiments with methylamine and alanine could be differentiated from one another and from the standards by thermal analysis for both the K-jarosite and Na-jarosite end-member suites. Changes included shifts in on-set temperatures, total temperature changes from on-set to final, and the presence of indicator peaks for methylamine and alanine in the physical mixture experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Klingelhofer G, Morris RV, Bernhardt B, Schroder C, Rodionov DS, de Souza PA, et al. Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer spectrometer. Science. 2004;306(5702):1740–5.

    Article  CAS  Google Scholar 

  2. Burns RG, editor. Gossans on Mars: spectral features attributed to jarosite. Lun Plan Sci. 1987;XVIII:936–7.

  3. Burns RG. Terrestrial analogues of the surface rocks of Mars? Nature. 1989;320:55–6.

    Article  Google Scholar 

  4. Akai J, Akai K, Ito M, Nakano S, Maki Y, Sasagawa I. Biologically induced iron ore at Gunma iron mine, Japan. Am Mineral. 1999;84(1–2):171–82.

    CAS  Google Scholar 

  5. Karamanev DG. Model of the biofilm structure of Thiobacillus ferrooxidans. J Biotechnol. 1991;20(1):51–64.

    Article  CAS  Google Scholar 

  6. Baird AK, Clark BC. Did komatiitic lavas erode channels on Mars? Nature. 1984;311(5951):18.

    Article  Google Scholar 

  7. Bibring J, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, et al. Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science. 2006;312(5772):400–4.

    Article  CAS  Google Scholar 

  8. Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthe M, et al. Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science. 2005;307(5715):1576–81.

    Article  CAS  Google Scholar 

  9. Burns RG. Terrestrial analogs of the surface rocks of Mars. Nature. 1986;320(6057):55–6.

    Article  CAS  Google Scholar 

  10. Burns RG. Ferric sulfates on Mars. J Geophys Res [Solid Earth]. 1987;92(B4):E570–4.

    Article  CAS  Google Scholar 

  11. Burns RG. Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J Geophys Res. 1990;95:14415–21.

    Article  Google Scholar 

  12. Burns RG. Evolution of sulfide mineralization on Mars. J Geophys Res. 1990;95(B9):14169–73.

    Article  Google Scholar 

  13. Burns RG. Rates and mechanisms of chemical weathering of ferro-magnesian silicates on Mars. Geochim Cosmochim Acta. 1993;57:4555–74.

    Article  CAS  Google Scholar 

  14. Kotler JM, Hinman NW, Yan B, Stoner DL, Scott JR. Glycine identification in natural jarosites using laser desorption Fourier transform mass spectrometry: implications for the search for life on Mars. Astrobiology. 2008;8(2):253–66.

    Article  CAS  Google Scholar 

  15. Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, et al. Sulfate minerals and organic compounds on Mars. Geology. 2006;34(5):357–60.

    Article  CAS  Google Scholar 

  16. Skelley AM, Scherer JR, Aubrey AD, Grover WH, Ivester RHC, Ehrenfreund P, et al. Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc Natl Acad Sci USA. 2005;102(4):1041–6.

    Article  CAS  Google Scholar 

  17. Mathews C, van Holde K, Ahern K. Biochemistry (Benjamin/Cummings, editor). San Francisco: Addison Wesley Longman; 2000.

  18. Umbarger HE. Amino-acid biosynthesis and its regulation. Annu Rev Biochem. 1978;47:533–606.

    Article  CAS  Google Scholar 

  19. Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology. 1998;144:2377–406.

    Article  CAS  Google Scholar 

  20. Evans J. Exobiology methane could signal life on Mars (Exobiology). Chem Ind. 2009;2:10.

    Google Scholar 

  21. Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, et al. Strong release of methane on Mars in northern summer 2003. Science. 2009;323(5917):1041–5.

    Article  CAS  Google Scholar 

  22. Thomas C, Mousis O, Picaud S, Ballenegger V. Variability of the methane trapping in martian subsurface clathrate hydrates. Planet Space Sci. 2009;57(1):42–7.

    Article  Google Scholar 

  23. Pizzarello S, Weber AL. Prebiotic amino acids as asymmetric catalysts. Science. 2004;303(5661):1151–4.

    Article  CAS  Google Scholar 

  24. Chyba C, Sagan C. Electical energy-sources for organic-synthesis on the early Earth. Origins Life Evol Biosphere. 1991;21(1):3–17.

    Article  CAS  Google Scholar 

  25. Sorrell WH. Interstellar grains as amino acid factories and the origin of life. Astrophys Space Sci. 1997;253(1):27–41.

    Article  CAS  Google Scholar 

  26. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL. The Miller volcanic spark discharge experiment. Science. 2008;322(5900):404–6.

    Article  CAS  Google Scholar 

  27. Schulte M, Shock E. Thermodynamics of Strecker synthesis in hydrothermal systems. Origins Life Evol Biosphere. 1995;25:161–8.

    Article  CAS  Google Scholar 

  28. Simoneit BRT, editor. Prebiotic organic synthesis under hydrothermal conditions: an overview. In – Space Life Sciences – Steps toward origins of life. Adv Space Res. 2004;33(1):88–94.

  29. Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92(3):887–92.

    Article  CAS  Google Scholar 

  30. Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91(1):267–74.

    Article  CAS  Google Scholar 

  31. Frost RL, Weier ML, Martens W. Thermal decomposition of jarosites of potassium, sodium, and lead. J Therm Anal Calorim. 2005;82:115–8.

    Article  CAS  Google Scholar 

  32. Frost RL, Wills RA, Kloprogge JT, Martens W. Thermal decomposition of ammonium jarosite. J Therm Anal Calorim. 2006;84:489–96.

    Article  CAS  Google Scholar 

  33. Frost RL, Wills RA, Kloprogge JT, Martens WN. Thermal analysis of hydronium jarosite. J Therm Anal Calorim. 2006;83(1):212–8.

    Article  Google Scholar 

  34. Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91(3):855–60.

    Article  CAS  Google Scholar 

  35. Ozacar M, Alp A, Aydin AO. Kinetics of thermal decomposition of plumbo-jarosite. J Therm Anal Calorim. 2000;59(3):869–75.

    Article  CAS  Google Scholar 

  36. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92(3):893–7.

    Article  CAS  Google Scholar 

  37. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92(3):911–6.

    Article  CAS  Google Scholar 

  38. Stalport F, Coll P, Cabane M, Person A, Gonzalez RN, Raulin F, et al. Search for past life on Mars: physical and chemical characterization of minerals of biotic and abiotic origin: part 1 – calcite. Geophys Res Lett. 2005;32(23):L23205.

    Article  Google Scholar 

  39. Stalport F, Coll P, Szopa C, Person A, Navarro-Gonzalez R, Cabane M, et al. Search for past life on Mars: physical and chemical characterization of minerals of biotic and abiotic origin. Geophys Res Lett. 2007;34(24):L24102.

    Article  Google Scholar 

  40. Baron D, Palmer CD. Solubility of jarosite at 4–35 °C. Geochim Cosmochim Acta. 1996;60:285–95.

    Google Scholar 

  41. Navrotsky A, Forray FL, Drouet C. Jarosite stability on Mars. Icarus. 2005;176(1):250–3.

    Article  CAS  Google Scholar 

  42. Dutrizac JE, Chen TT. Synthesis and properties of V3+ analogues of jarosite-group minerals. Can Mineral. 2003;41:479–88.

    Article  CAS  Google Scholar 

  43. Frost RL, Weier ML, Martens W. Raman spectroscopy of beaverite and plumbojarosite. J Raman Spectrosc. 2005;36(12):1106–12.

    Article  CAS  Google Scholar 

  44. Stoffregen RE, Alpers CN, Jambor JL. Alunite-jarosite crystallography, thermodynamics, and geochronology. In: Alpers CN, Jambor JL, editors. Sulfate minerals: crystallography, geochemistry, and environmental significance, reviews in mineralogy and geochemistry, vol 40. Washington, DC: Mineralogical Society of America; 2000. p 453–79.

    Google Scholar 

  45. Patron L, Marinescu G, Culita D, Diamandescu L, Carp O. Thermal stability of amino acid-(tyrosine and tryptophan) coated magnetites. J Therm Anal Calorim. 2008;91(1):627–32.

    Article  CAS  Google Scholar 

  46. Becker U, Gasharova B. AFM observations and simulations of jarosite growth at the molecular scale: probing the basis for the incorporation of foreign ions into jarosite as a storage mineral. Phys Chem Miner. 2001;28(8):545–56.

    Article  CAS  Google Scholar 

  47. Wendlandt WW. The development of thermal-analysis instrumentation 1955–1985. Thermochim Acta. 1986;100(1):1–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research at the University of Montana and the Idaho National Laboratory (INL) comes from the NASA exobiology program (NNX08AP59G). J.M.K. would like to thank the Inland Northwest Research Alliance for graduate support during this project. We would like to thank Christopher Orme of the INL for assistance with thermal analysis. Research performed at the INL under DOE/NE Idaho Operations Office Contract DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy W. Hinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotler, J.M., Hinman, N.W., Richardson, C.D. et al. Thermal decomposition behavior of potassium and sodium jarosite synthesized in the presence of methylamine and alanine. J Therm Anal Calorim 102, 23–29 (2010). https://doi.org/10.1007/s10973-009-0338-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0338-3

Keywords

Navigation