Thermomechanical characterization of PVDF and P(VDF-TrFE) blends containing corn starch and natural rubber

Abstract

Films of poly(vinylidene fluoride), PVDF, and poly(vinylidene fluoride – trifluoroethylene), P(VDF-TrFE), containing corn starch and latex of natural rubber as additives were produced by compressing/annealing forming blends visioning applications as biomaterials. Therefore, considering the possible applications of these blends, a basic characterization has been carried out targeting to infer on their thermomechanical properties. The polymer films (PVDF and P(VDF-TrFE)) with different percentage of additives were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), differential scanning calorimetry (DSC), and dynamical-mechanical analysis (DMA). The compressing/annealing process allowed discarding the necessity of using the solvents to dissolve either PVDF or P(VDF-TrFE), which are usually toxic to human. The results showed that the polymers do not interact chemically with the additives with the blends showing high thermal stability and elasticity modulus at the same order of magnitude of the bone, for instance. The SEM imaged revealed that the blends present morphological structures of typical physical mixtures where each material can be identified within the blends.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Wang Y, Wang J, Wang F, Li S, Xiao J. PVDF based all-organic composite with high dielectric constant. Polym Bull. 2008;60:647–55.

    Article  CAS  Google Scholar 

  2. 2.

    Ciesinska W, Zielinski J, Brzozowska T. Thermal treatment of pitch-polymer blends. J Therm Anal Calorim. 2009;95:193–6.

    Article  CAS  Google Scholar 

  3. 3.

    Molenda M, Dziembaj R, Piwowarska Z, Drozdek M. A new method of coating powdered supports with conductive carbon films. J Therm Anal Calorim. 2007;88:503–6.

    Article  CAS  Google Scholar 

  4. 4.

    Chinaglia DL, Schmidt TF, Santos LF, Balogh DT, Oliveira ON Jr, Faria RM. Fabrication of novel light-emitting devices based on green-phosphor/conductive-polymer composites. Philos Mag Lett. 2007;87:403–8.

    Article  CAS  Google Scholar 

  5. 5.

    Ito A, Tanaka K, Kawaji H, Atake T, Ando N, Hato Y. Magnetic phase transition of Li0.75CoO2 compared with LiCoO2 and Li0.5CoO2. J Therm Anal Calorim. 2008;92:399–401.

    Article  CAS  Google Scholar 

  6. 6.

    Nalwa HS. Ferroelectric polymers: chemistry, physics and applications. New York: Marcel Dekker; 1995.

    Google Scholar 

  7. 7.

    Gregorio R Jr, Cestari M. Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene Fluoride). J Polym Sci. 1994;32:859–70.

    CAS  Google Scholar 

  8. 8.

    Tabary N, Lepretre S, Boschin F, Blanchemain N, Neut C, Delcourt-Debruyne E, et al. Functionalization of PVDF membranes with carbohydrate derivates for the controlled delivery of chlorhexidin. Biomol Eng. 2007;24:472–6.

    Article  CAS  Google Scholar 

  9. 9.

    Gallego-Perez D, Ferrell N, Hansford DJ. Fabrication of piezoelectric Polyvinylidene Fluoride (PVDF) microstructures by soft lithography for tissue engineering and cell biology applications. In: MRS Spring Meeting San Francisco, California. 2007. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=8775&DID=201955&action=detail Accessed 12 June 2009.

  10. 10.

    Callegari B, Belangero WD. Análise da interface formada entre o polifluoreto de vinilideno (piezelétrico e não piezelétrico) e o tecido ósseo de ratos. Acta Ortopedica Brasileira. 2004;12:160–6.

    Google Scholar 

  11. 11.

    Laroche G, Marois Y, Guidoin R, King MW, Martin L, How T, et al. Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J Biomed Mater Res. 1995;29:1525–36.

    Article  CAS  Google Scholar 

  12. 12.

    Valentini RF, Vargo TG, Gardella JA, Aebischer P. Electrically charged polymeric substrates enhance nerve fibre outgrowth In vitro. Biomaterials. 1992;13:183–90.

    Article  CAS  Google Scholar 

  13. 13.

    Aoshima R, Kanda Y, Takada A, Yamashita A. Sulfonated poly(vinylidene fluoride) as a biomaterial—immobilization of urokinase and biocompatibility. J Biomed Mater Res. 1982;16:289–99.

    Article  CAS  Google Scholar 

  14. 14.

    Fernandez MV, Suzuki A, Chiba A. Study of annealing effects on the structure of vinylidene fluoride-trifluoroethylene copolymers using WAXS and SAXS. Macromoleculares. 1987;20:1806–11.

    Article  CAS  Google Scholar 

  15. 15.

    Matsumoto A, Horie S, Yamada H, Matsushige K, Kuwajima S, Ishida K. Ferro- and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film. Appl Phys Lett. 2007;90:290–6.

    Google Scholar 

  16. 16.

    Ploss B, Ploss B. Dielectric nonlinearity of PVDF–TrFE copolymer. Polymer. 2000;41:6087–93.

    Article  CAS  Google Scholar 

  17. 17.

    Gimenes R, Zaghete MA, Bertolini MJ, Varela JA, Coelho LO, Silva NF. Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration (Proceedings Paper). Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD) 2004;5385:539–47.

  18. 18.

    Beloti MM, de Oliveira PT, Gimenes R, Zaghete MA, Bertolini MJ, Rosa AL. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate. J Biomed Mater Res Part A. 2006;79A:282–8.

    Article  CAS  Google Scholar 

  19. 19.

    Agostini DLS, Constantino CJL, Job AE. Thermal degradation of both latex and latex cast film forming membranes combined TG/FTIR investigation. J Therm Anal Calorim. 2008;91:703–7.

    Article  CAS  Google Scholar 

  20. 20.

    de Oliveira LCS, de Arruda EJ, Favaro SP, da Costa RB, Gonçalves PS, Job AE. Evaluation of thermal behavior of latex membranes from genetically improved rubber tree (Hevea brasiliensis). Thermochim Acta. 2006;445:27–31.

    Article  Google Scholar 

  21. 21.

    Brandão ML, Coutinho Netto J, Thomazini JA, Lachat JJ, Muglia VF, Piccinato CE. Prótese vascular derivada do látex. Braz Vasc J. 2007;6:130–41.

    Google Scholar 

  22. 22.

    Neves-Junior WFP, Ferreira M, Alves MCO, Graeff CFO, Mulato M, Coutinho-Netto J, et al. Influence of fabrication process on the final properties of natural-rubber latex tubes for vascular prosthesis. Braz J Phys. 2006;36:586–91.

    Article  Google Scholar 

  23. 23.

    Balabanian CACA, Coutinho-Netto J, Lamano-Carvalho TL, Lacerda SA, Brentegani LG. Biocompatibility of natural latex implanted into dental alveolus of ratos. J Oral Sci. 2006;48:201–5.

    Article  Google Scholar 

  24. 24.

    Lacerda LG, da Carvalho Silva, Filho MA, Demiate IM, Bannach G, Ionashiro M, et al. Thermal behaviour of corn starch granules under action of fungal α-amylase. J Therm Anal Calorim. 2008;93:445–9.

    Article  CAS  Google Scholar 

  25. 25.

    Gomes ME, Sikavitsas VI, Behravesh E, Reis RL, Mikos AG. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res Part A. 2003;67:87–95.

    Article  Google Scholar 

  26. 26.

    Alves CM, Yang Y, Carnes DL, Ong JL, Sylvia VL, Dean DD, et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007;28:307–15.

    Article  CAS  Google Scholar 

  27. 27.

    Mano JF, Reis RL. Viscoelastic monitoring of starch-based biomaterials in simulated physiological conditions. Mater Sci Eng A. 2004;370:321–5.

    Article  Google Scholar 

  28. 28.

    Simoes RD, Job AE, Chinaglia DL, Zucolotto V, Camargo-Filho JC, Alves N, et al. Structural characterization of blends containing both PVDF and natural rubber latex. J Raman Spectrosc. 2005;36:1118–24.

    Article  CAS  Google Scholar 

  29. 29.

    Kobayashi M, Tashiro K, Tadokoro H. Molecular vibrations of three cristal forms of Poly(vinylidene Fluoride). Macromolecules. 1975;8:158–71.

    Article  CAS  Google Scholar 

  30. 30.

    Prabu AA, Lee JS, Kim KJ, Lee HS. Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P(VDF/TrFE) (72/28). Vib Spectrosc. 2006;41:1–13.

    Article  CAS  Google Scholar 

  31. 31.

    Piza MA, Constantino CJL, Venâncio EC, Mattoso LHC. Interaction mechanism of poly (o-ethoxyaniline) and collagen blends. Polymer. 2003;44:5663–70.

    Article  CAS  Google Scholar 

  32. 32.

    Sencadas V, Lanceros-Méndez S, Mano JF. Thermal characterization of a vinylidene fluoride-trifluorethylene (75–25) (%mol) copolymer film. J Non-Cryst Solids. 2006;352:5376–81.

    Article  CAS  Google Scholar 

  33. 33.

    Botelho G, Lanceros-Mendez S, Goncalves AM, Sencadas V, Rocha JG. Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the b-phase. J Non-Cryst Solids. 2008;354:72–8.

    Article  CAS  Google Scholar 

  34. 34.

    Campos JSC, Ribeiro AA, Cardoso CX. Preparation and characterization of PVDF/CaCO3 composites. Mater Sci Eng B. 2007;136:123–8.

    Article  CAS  Google Scholar 

  35. 35.

    Basset CAL. Biochem Physiol Bone. New York: Academic Press; 1971.

    Google Scholar 

  36. 36.

    Linares A, Costa JL. Tensile and dynamic mechanical behaviour of polymer blends based on PVDF. Eur Polym J. 1997;33:467–73.

    Article  CAS  Google Scholar 

  37. 37.

    Hatakeyama T, Liu Z, editors. Handbook of thermal analysis. New York: Wiley; 2000. p. 209.

    Google Scholar 

Download references

Acknowledgements

FAPESP and CAPES (process 118/06) from Brazil and Fundación Carolina and MICINN (PHB2005-0057-PC) from Spain for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. J. L. Constantino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simoes, R.D., Rodriguez-Perez, M.A., de Saja, J.A. et al. Thermomechanical characterization of PVDF and P(VDF-TrFE) blends containing corn starch and natural rubber. J Therm Anal Calorim 99, 621–629 (2010). https://doi.org/10.1007/s10973-009-0285-z

Download citation

Keywords

  • PVDF
  • P(VDF-TrFE)
  • Films
  • Blends
  • Thermomechanical properties