Skip to main content
Log in

Glass transition of heterogeneous polymeric systems studied by calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This personal review focuses on two aspects. First, glass transition dynamics and hence also calorimetry is connected to dynamic heterogeneity. This results in an interplay of the corresponding dynamic length scales and length scales from structural heterogeneities in polymeric samples. Second, the complexity of the dynamic glass transition itself results in different effects of this interplay for different experimental observables. Hence the comparison of results from calorimetry with other relaxation methods gives important clues to an understanding of the complex glass transition phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathot VBF (ed) Calorimetry and thermal analysis of polymers. München: Hanser; 1994.

    Google Scholar 

  2. Beiner M, Korus J, Lockwenz H, Schröter K, Donth E. Heat capacity spectroscopy compared to other linear response methods at the dynamic glass transition in poly(vinyl acetate). Macromolecules. 1996;29:5183–9.

    Article  CAS  Google Scholar 

  3. Weyer S, Huth H, Schick C. Application of an extended tool-Narayanaswamy–Moynihan model. Part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC. Polymer. 2005;46:12240–6.

    Article  CAS  Google Scholar 

  4. Donth E. The glass transition. Berlin: Springer; 2001.

    Google Scholar 

  5. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW. Relaxation in glassforming liquids and amorphous solids. J Appl Phys. 2000;88:3113–57.

    Article  CAS  Google Scholar 

  6. Böhmer R, Chamberlin RV, Diezemann G, Geil B, Heuer A, Hinze G, Kuebler SC, Richert R, Schiener B, Sillescu H, Spiess HW, Tracht U, Wilhelm M. Nature of the non-exponential primary relaxation in structural glass-formers probed by dynamically selective experiments. J Noncryst Solids. 1998;235–237:1–9.

    Article  Google Scholar 

  7. Bergroth MNJ, Vogel M, Glotzer SC. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids. J Phys Chem B. 2005;109:6748–53.

    Article  CAS  Google Scholar 

  8. Johari GP. Glass transition and secondary relaxations in molecular liquids and crystals. Ann NY Acad Sci. 1976;279:117–40.

    Article  CAS  Google Scholar 

  9. Widmer-Cooper A, Harrowell P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys Rev Lett. 2006;96:185701.

    Article  Google Scholar 

  10. Donth E, Beiner M, Reissig S, Korus J, Garwe F, Vieweg S, Kahle S, Hempel E, Schröter K. Fine structure of the main transition in amorphous polymers: Entanglement spacing and characteristic length of the glass transition. Discussion of Examples. Macromolecules. 1996;29:6589–600.

    Article  CAS  Google Scholar 

  11. Ngai KL, Plazek DJ. Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Technol. 1995;68:376–434.

    CAS  Google Scholar 

  12. Wunderlich B. Thermal analysis of macromolecules—a personal review. J Therm Anal Calorim. 2007;89:321–56.

    Article  CAS  Google Scholar 

  13. Danch A. Thermodynamics and structure of the ordered amorphous phase in polymers. J Therm Anal Calorim. 2005;79:205–12.

    Article  CAS  Google Scholar 

  14. Cebe P. Recent developments in thermal analysis of polymers: calorimetry in the limit of slow and fast heating rates. J Polym Sci B Polym Phys. 2005;3:629–36.

    Article  Google Scholar 

  15. Bueche F. Mobility of molecules in liquids near the glass temperature. J Chem Phys. 1959;30:748–52.

    Article  CAS  Google Scholar 

  16. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.

    Article  CAS  Google Scholar 

  17. Johari GP. A resolution for the enigma of a liquid’s configurational entropy-molecular kinetics relation. J Chem Phys. 2000;112:8958–69.

    Article  CAS  Google Scholar 

  18. Hlavacek B, Sestak J, Mares JJ. Mutual interdependence of partitions functions in vicinity T g of transition. J Therm Anal Calorim. 2002;67:239–48.

    Article  CAS  Google Scholar 

  19. Donth E. The size of cooperatively rearranging regions at the glass transition. J Noncryst Solids. 1982;53:325–30.

    Article  CAS  Google Scholar 

  20. Hempel E, Hempel G, Hensel A, Schick C, Donth E. Characteristic length of dynamic glass transition near Tg for a wide assortment of glass-forming substances. J Phys Chem B. 2000;104:2460–6.

    Article  CAS  Google Scholar 

  21. Schröter K. Characteristic length of glass transition heterogeneity from calorimetry. J Noncryst Solids. 2006;352:3249–54.

    Article  Google Scholar 

  22. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, El Masri D, L’Hote D, Ladieu F, Pierno M. Direct experimental evidence of a growing length scale accompanying the glass transition. Science. 2005;310:1797–800.

    Article  CAS  Google Scholar 

  23. Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G, Bouchaud JP, Ladieu F, L’Hote D, Tarjus G. Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence. Phys Rev E. 2007;76:041510.

    Article  CAS  Google Scholar 

  24. Berthier L, Biroli G, Bouchaud JP, Kob W, Miyazaki K, Reichman DR. Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics. J Chem Phys. 2007;126:184503.

    Article  CAS  Google Scholar 

  25. Danch A. On the influence of the supermolecular structure on structural relaxation in the glass transition zone: free volume approach. Fibres Textiles East Eur. 2003;11:128–31.

    Google Scholar 

  26. Glarum SH. Dielectric relaxation of isoamyl bromide. J Chem Phys. 1960;33:639–43.

    Article  CAS  Google Scholar 

  27. Huth H, Beiner M, Donth E. Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: two post-Adam-Gibbs variants. Phys Rev B. 2000;61:15092–101.

    Article  CAS  Google Scholar 

  28. Matyushov DV, Angell CA. Gaussian excitations model for glass-former dynamics and thermodynamics. J Chem Phys. 2007;126:094501.

    Article  Google Scholar 

  29. Stevenson JD, Schmalian J, Wolynes PG. The shapes of cooperatively rearranging regions in glass-forming liquids. Nat Phys. 2006;2:268–74.

    Article  CAS  Google Scholar 

  30. Schröter K, Reissig S, Hempel E, Beiner M. From small molecules to polymers: relaxation behavior of n-butyl methacrylate based systems. J Noncryst Solids. 2007;353:3976–83.

    Article  Google Scholar 

  31. Schmidt-Rohr K, Spiess HW. Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. Phys Rev Lett. 1991;66:3020–3.

    Article  CAS  Google Scholar 

  32. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW. Length scale of dynamic heterogeneities at the glass transition as determined by multidimensional NMR. Phys Rev Lett. 1998;81:2727–30.

    Article  CAS  Google Scholar 

  33. Qiu XH, Ediger MD. Length scale of dynamic heterogeneity in supercooled d-sorbitol: comparison to model predictions. J Phys Chem B. 2003;107:459–64.

    Article  CAS  Google Scholar 

  34. Leheny RL, Menon N, Nagel SR, Price DL, Suzuya K, Thiyagarajan P. Structural studies of an organic liquid through the glass transition. J Chem Phys. 1996;105:7783–94.

    Article  CAS  Google Scholar 

  35. Laughlin WT, Uhlmann DR. Viscous flow in simple organic liquids. J Phys Chem. 1972;76:2317–25.

    Article  CAS  Google Scholar 

  36. Beiner M, Huth H, Schröter K. Crossover region of dynamic glass transition: general trends and individual aspects. J Noncryst Solids. 2001;279:126–35.

    Article  CAS  Google Scholar 

  37. Beiner M, Kahle S, Hempel E, Schröter K, Donth E. Two calorimetrically distinct parts of the dynamic glass transition. Europhys Lett. 1998;44:321–7.

    Article  CAS  Google Scholar 

  38. Kahle S, Hempel E, Beiner M, Unger R, Schröter K, Donth E. Confirmation of a calorimetric peculiarity in the crossover region of glass transition in poly(n-hexyl methacrylate) by differential scanning calorimetry. J Mol Struct. 1999;479:149–62.

    Article  CAS  Google Scholar 

  39. Huth H, Beiner M, Weyer S, Merzlyakov M, Schick C, Donth E. Glass transition cooperativity from heat capacity spectroscopy— temperature dependence and experimental uncertainties. Thermochim Acta. 2001;377:113–24.

    Article  CAS  Google Scholar 

  40. Appignanesi GA, Fris JAR, Montani RA, Kob W. Democratic particle motion for metabasin transitions in simple glass formers. Phys Rev Lett. 2006;96:057801.

    Article  CAS  Google Scholar 

  41. Donth E. Can dynamic neutron scattering help to understand a thermodynamic variant of an internal quantum-mechanical experiment in the angstrom range? Eur Phys J E. 2003;12:11–8.

    Article  CAS  Google Scholar 

  42. Gillham JK, Boyer RF. The Tll relaxation of polystyrene. J Macromol Sci Phys. 1977;B13:497–535.

    Article  Google Scholar 

  43. Chen J, Kow C, Fetters LJ, Plazek DJ. Some evidence against the existence of the liquid−liquid transition III: the evolution of the Tll event by differential scanning calorimetry. J Polym Sci Polym Phys Ed. 1982;20:1565–74.

    Article  CAS  Google Scholar 

  44. Jackson CL, McKenna GB. The glass transition of organic liquids confined to small pores. J Noncryst Solids. 1991;131–133:221–4.

    Article  Google Scholar 

  45. Schönhals A, Stauga R. Broadband dielectric study of anomalous diffusion in a poly(propylene glycol) melt confined to nanopores. J Chem Phys. 1998;108:5130–6.

    Article  Google Scholar 

  46. Schönhals A, Goering H, Schick C, Frick B, Zorn R. Polymers in nanoconfinement: what can be learned from relaxation and scattering experiments? J Noncryst Solids. 2005;351:2668–77.

    Article  Google Scholar 

  47. Schönhals A, Goering H, Schick C, Frick B, Mayorova M, Zorn R. Segmental dynamics of poly(methyl phenyl siloxane) confined to nanoporous glasses. Eur Phys J Spec Topics. 2007;141:255–9.

    Article  Google Scholar 

  48. Donth E. Glasübergang. Berlin: Akademie-Verlag; 1981.

    Google Scholar 

  49. Kremer F, Huwe A, Arndt M, Behrens P, Schwieger W. How many molecules form a liquid? J Phys Condens Matter. 1999;11:A175–88.

    Article  CAS  Google Scholar 

  50. Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter. 2005;17:R461–524.

    Article  CAS  Google Scholar 

  51. Schick C, Donth E. Characteristic length of glass transition: experimental evidence. Phys Scripta. 1991;43:423–9.

    Article  CAS  Google Scholar 

  52. Wang YM, Funari SS, Mano JF. Influence of semicrystalline morphology on the glass transition of poly(l-lactic acid). Macromol Chem Phys. 2006;207:1262–71.

    Article  CAS  Google Scholar 

  53. Saiter A, Delpouve N, Dargent E, Saiter JM. Cooperative rearranging region size determination by temperature modulated DSC in semi-crystalline poly(l-lactide acid). Eur Polym J. 2007;43:4675–82.

    Article  CAS  Google Scholar 

  54. Delpouve N, Saiter A, Mano JF, Dargent E. Cooperative rearranging region size in semi-crystalline poly(l-lactic acid). Polymer. 2008;49:3130–5.

    Article  CAS  Google Scholar 

  55. Li QX, Simon SL. Curing of bisphenol M dicyanate ester under nanoscale constraint. Macromolecules. 2008;41:1310–7.

    Article  CAS  Google Scholar 

  56. Keddie JL, Jones RAL, Cory RA. Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett. 1994;27:59–64.

    Article  CAS  Google Scholar 

  57. Serghei A, Kremer F. Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys. 2008;209:810–7.

    Article  CAS  Google Scholar 

  58. Wang X, Zhou W. Glass transition of microtome-sliced thin films. Macromolecules. 2002;35:6747–50.

    Article  CAS  Google Scholar 

  59. Efremov MY, Olson EA, Zhang M, Zhang Z, Allen LH. Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett. 2003;91:085703.

    Article  Google Scholar 

  60. Lupascu V, Huth H, Schick C, Wübbenhorst M. Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta. 2005;432:222–8.

    Article  CAS  Google Scholar 

  61. Huth H, Minakov AA, Schick C. Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci B Polym Phys. 2006;44:2996–3005.

    Article  CAS  Google Scholar 

  62. Huth H, Minakov AA, Serghei A, Kremer F, Schick C. Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Topics. 2007;141:153–60.

    Article  Google Scholar 

  63. Serghei A, Hartmann L, Kremer F. Molecular dynamics in thin films of isotactic poly(methylmethacrylate)—revisited. J Noncryst Solids. 2007;353:4330–3

    Article  CAS  Google Scholar 

  64. Koh YP, McKenna GB, Simon SL. Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci B Polym Phys. 2006;44:3518–27.

    Article  CAS  Google Scholar 

  65. Fakhraai Z, Valadkhan S, Forrest JA. Qualitative discrepancy between different measures of dynamics in thin polymer films. Eur Phys J E. 2005;18:143–8.

    Article  CAS  Google Scholar 

  66. Fakhraai Z, Forrest JA. Measuring the surface dynamics of glassy polymers. Science. 2008;319:600–4.

    Article  CAS  Google Scholar 

  67. Vieweg S, Unger R, Hempel E, Donth E. Kinetic structure of glass transition in polymer interfaces between filler and SBR matrix. J Noncryst Solids. 1998;235–237:470–5.

    Article  Google Scholar 

  68. Sargsyan A, Tonoyan A, Davtyan S, Schick C. The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data. Eur Polym J. 2007;43:3113–27.

    Article  CAS  Google Scholar 

  69. Blum FD, Young EN, Smith G, Sitton OC. Thermal analysis of adsorbed poly(methyl methacrylate) on silica. Langmuir. 2006;22:4741–4.

    Article  CAS  Google Scholar 

  70. Lee JY, Su KE, Chan EP, Zhang QL, Ernrick T, Crosby AJ. Impact of surface-modified nanoparticles on glass transition temperature and elastic modulus of polymer thin films. Macromolecules. 2007;40:7755–7.

    Article  CAS  Google Scholar 

  71. Srivastava S, Basu JK. Experimental evidence for a new parameter to control the glass transition of confined polymers. Phys Rev Lett. 2007;98:165701.

    Article  CAS  Google Scholar 

  72. Fragiadakis D, Pissis P, Bokobza L. Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites. J Noncryst Solids. 2006;352:4969–72.

    Article  CAS  Google Scholar 

  73. Xia HS, Song M. Characteristic length of dynamic glass transition based on polymer/clay intercalated nanocomposites. Thermochim Acta. 2005;429:1–5.

    Article  CAS  Google Scholar 

  74. Bansal A, Yang HC, Li CZ, Cho KW, Benicewicz BC, Kumar SK, Schadler LS. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater. 2005;4:693–8.

    Article  CAS  Google Scholar 

  75. Sen S, Xie Y, Bansal A, Yang H, Cho K, Schadler LS, Kumar SK. Equivalence between polymer nanocomposites and thin polymer films: effect of processing conditions and molecular origins of observed behavior. Eur Phys J Spec Topics. 2007;141:161–5.

    Article  Google Scholar 

  76. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mat. 2007;6:278–82.

    Article  CAS  Google Scholar 

  77. Beiner M, Schröter K, Hempel E, Reissig S, Donth E. Multiple glass transition and nanophase separation in poly(n-alkyl methacrylate) homopolymers. Macromolecules. 1999;32:6278–82.

    Article  CAS  Google Scholar 

  78. Beiner M. Relaxation in poly(alkyl methacrylate)s: crossover region and nanophase separation. Macromol Rapid Comm. 2001;22:869–95.

    Article  Google Scholar 

  79. Beiner M, Kabisch O, Reichl S, Huth H. Structural and dynamic nanoheterogeneities in higher poly(alkyl methacrylate)s. J Noncryst Solids. 2002;307–310:658–66.

    Article  Google Scholar 

  80. Beiner M, Huth H. Nanophase separation and hindered glass transition in side-chain polymers. Nat Mater. 2003;2:595–9.

    Article  CAS  Google Scholar 

  81. Colmenero J, Arbe A. Segmental dynamics in miscible polymer blends: recent results and open questions. Soft Matter. 2007;3:1474–85.

    Article  CAS  Google Scholar 

  82. Beiner M. Proteins: is the folding process dynamically encoded? Soft Matter. 2007;3:391–3.

    Article  CAS  Google Scholar 

  83. Lodge TP, McLeish TCB. Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules. 2000;33:5278–84.

    Article  CAS  Google Scholar 

  84. Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: the case of PEO/PMMA. J. Polym Sci B Polym Phys. 2006;44:756–63.

    Article  CAS  Google Scholar 

  85. Gaikwad AN, Wood ER, Ngai T, Lodge TP. Two calorimetric glass transitions in miscible blends containing poly(ethylene oxide). Macromolecules. 2008;41:2502–8.

    Article  CAS  Google Scholar 

  86. Cangialosi D, Alegria A, Colmenero J. Predicting the time scale of the component dynamics of miscible polymer blends: the polyisoprene/poly(vinylethylene) case. Macromolecules. 2006;39:7149–56.

    Article  CAS  Google Scholar 

  87. Cangialosi D, Alegria A, Colmenero J. Route to calculate the length scale for the glass transition in polymers. Phys Rev E. 2007;76:011514.

    Article  CAS  Google Scholar 

  88. Kumar SK, Shenogin S, Colby RH. Dynamics of miscible polymer blends: role of concentration fluctuations on characteristic segmental relaxation times. Macromolecules. 2007;40:5759–66.

    Article  CAS  Google Scholar 

  89. Shenogin S, Kant R, Colby RH, Kumar SK. Dynamics of miscible polymer blends: predicting the dielectric response. Macromolecules. 2007;40:5767–75.

    Article  CAS  Google Scholar 

  90. Zheng W, Simon SL. The glass transition in athermal poly(alpha-methyl styrene)/oligomer blends. J Polym Sci B Polym Phys. 2008;46:418–30.

    Article  CAS  Google Scholar 

  91. Tyagi M, Arbe A, Alegria A, Colmenero J, Frick B. Dynamic confinement effects in polymer blends. A quasielastic neutron scattering study of the slow component in the blend poly(vinyl acetate)/poly(ethylene oxide). Macromolecules. 2007;40:4568–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the German Science Foundation and state Saxony-Anhalt for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Schröter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröter, K. Glass transition of heterogeneous polymeric systems studied by calorimetry. J Therm Anal Calorim 98, 591–599 (2009). https://doi.org/10.1007/s10973-009-0269-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0269-z

Keywords

Navigation