Skip to main content
Log in

Thermal degradation studies on PMMA–HET acid based oligoesters blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Imparting thermal stability to polymethyl methacrylate (PMMA) without affecting its optical clarity is attempted by incorporating HET acid based oligoesters. Pure PMMA and PMMA containing five and 20 wt% of four different oligoesters are separately prepared using bulk polymerization. The thermal properties of the materials studied using DSC, TG, TG–FTIR and Pyr–GC–MS are presented. The main volatile degradation products identified are CO, HCl, CO2, H2O, hexachlorocyclopentadiene, hexachloroendomethylene tetrahydrophthalic acid/anhydride and methyl methacrylate. A detailed mechanism for the influence of the degradation products of HET acid based oligoesters on the thermal degradation of PMMA is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Troitzsch JH. Plastics flammability handbook: principles, regulations, testing, and approval. 3rd ed. Munich: Hanser Publishers; 2004.

    Google Scholar 

  2. Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker; 2000.

    Google Scholar 

  3. Hindersinn R. Encyclopedia of polymer science and technology. 2nd ed. New York: Wiley; 1977.

    Google Scholar 

  4. Novikov SN, Gitina RM, Antonov AV. High molecular weight halogenated fire retardants. Int J Polym Mater. 1993;20:19–30.

    Article  CAS  Google Scholar 

  5. Harper CA. Modern plastics handbook. New York: McGraw-Hill; 2000.

    Google Scholar 

  6. Zeng WR, Li SF, Chow WK. Review on chemical reactions of burning poly(methyl methacrylate) PMMA. J Fire Sci. 2002;20:401–33.

    Article  CAS  Google Scholar 

  7. Etienne S, Becker C, Ruch D, Grignard B, Cartigny G, Detrembleur C, et al. Effects of incorporation of modified silica nanoparticles on the mechanical and thermal properties of PMMA. J Therm Anal Cal. 2007;87:101–4.

    Article  CAS  Google Scholar 

  8. Vijayakumar CT, Lederer K. An insight into the degradation aspects of 1,4,5,6,7,7-hexachloro-5-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid based two component polyesters. Thermochim Acta. 1990;173:129–35.

    Article  CAS  Google Scholar 

  9. Rajkumar T, Vijayakumar CT, Sivasamy P. HET acid based oligoesters: TGA/FTIR studies. Eur Polym J. 2008;44:1865–73.

    Article  CAS  Google Scholar 

  10. Atkinson PA, Haines PJ, Skinner GA, Lever TJ. Studies of fire-retardant polyester thermosets using thermal methods. J Therm Anal Cal. 2000;59:395–408.

    Article  CAS  Google Scholar 

  11. Vijayakumar CT. Investigations on the thermal degradation of polyesters. Doktor Der Montanistatischen Wissenschaften Dissertation. Montanuniversität Leoben, A-8700 Leoben, Austria; 1987.

  12. Dharwadkar SR, Kharkhanavala MD. Thermal analysis, calculation of activation energy of decomposition reactions from thermogravimetric analysis. Thermal analysis. New York: Academic Press; 1969. p. 1049–69.

    Google Scholar 

  13. Vijayakumar CT, Sivasamy P, Rajkumar T. Synthesis and characterization of 1,3-bis(2-hydroxyethoxy)benzene based saturated and unsaturated polyesters. Eur Polym J. 2007;43:3028–35.

    Article  CAS  Google Scholar 

  14. Chen W, Feng L, Qu B. In situ synthesis of poly(methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Solid State Commun. 2004;130:259–63.

    Article  CAS  Google Scholar 

  15. Wang H, Meng S, Zhong W, Du W, Du Q. Poly(methyl methacrylate)/silica/titania ternary nanocomposites with greatly improved thermal and ultraviolet-shielding properties. Polym Degrad Stab. 2006;91:1455–61.

    Article  CAS  Google Scholar 

  16. Kim S, Wilkie CA. Transparent and flame retardant PMMA nanocomposites. Polym Adv Technol. 2008;19:496–506.

    Article  CAS  Google Scholar 

  17. Gao Z, Xie W, Hwu JM, Wells L, Pan WP. The characterization of organic modified montmorillonite and its filled PMMA nanocomposite. J Therm Anal Cal. 2001;64:467–75.

    Article  CAS  Google Scholar 

  18. Kashiwagi T, Gilman JW. Silicon based flame retardants. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker; 2000. p. 363.

    Google Scholar 

  19. Inoue E, Tsuchiya M, Ishimaru K, Kojima T. Thermogravimetric studies on poly(methyl methacrylate), poly(tetrahydrofuran) and their blends. J Therm Anal Cal. 2002;70:747–53.

    Article  CAS  Google Scholar 

  20. Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Moreira SGC, Sales MJA. Thermal and structural behavior of Buriti oil/poly(methyl methacrylate) and Buriti oil/polystyrene materials. J Therm Anal Cal. 2008;92:529–34.

    Article  Google Scholar 

  21. Hirschler MM. Chemical aspects of thermal decomposition. In: Grand AF, Wilkie CA, editors. Fire retardancy of polymeric materials. New York: Marcel Dekker; 2000. p. 61.

    Google Scholar 

  22. Peterson JD, Vyazovkin S, Wight CA. Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B. 1999;103:8087–92.

    Article  CAS  Google Scholar 

  23. Stoliarov SI, Westmoreland PR, Nyden MR, Forney GP. A reactive molecular dynamics model of thermal decomposition in polymers: I. Poly(methyl methacrylate). Polymer. 2003;44:883–94.

    Article  CAS  Google Scholar 

  24. Kashiwagi T, Inaba A, Hamins A. Behavior of primary radicals during thermal degradation of poly(methyl methacrylate). Polym Degrad Stab. 1989;26:161–84.

    Article  CAS  Google Scholar 

  25. Holland BJ, Hay JN. The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer. 2001;42:4825–35.

    Article  CAS  Google Scholar 

  26. Madorsky SL. Thermal degradation of organic polymers. New York: Interscience Publishers; 1964.

    Google Scholar 

  27. Hirata H, Kashiwagi T, Brown JE. Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules. 1985;18:1410–8.

    Article  CAS  Google Scholar 

  28. Lomakin SM, Brown JE, Breese RS, Nyden MR. An investigation of the thermal stability and char-forming tendency of cross-linked poly(methyl methacrylate). Polym Degrad Stab. 1993;41:229–43.

    Article  CAS  Google Scholar 

  29. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. New York: Wiley; 1986.

    Google Scholar 

  30. Hummel DO, Scholl F. Atlas of polymer and plastics analysis. Munich: Hanser Verlag; 1984.

    Google Scholar 

  31. Mullens J, Reggers G, Ruysen M, Carleer R, Yperman J, Franco D, et al. The determination of the gases released during heating of a flame retardant for polymers, coupling of TG with FTIR, MS and GC-MS. J Therm Anal. 1997;49:1061–7.

    Article  CAS  Google Scholar 

  32. Pielichowski K, Hamerton I. TGA/FTIR studies on the thermal stability of poly(vinyl chloride) blends with a novel colourant and stabilizer: 3-(2,4-dichlorophenylazo)-9-(2,3-epoxypropane)carbazole. Polymer. 1998;39:241–4.

    Article  CAS  Google Scholar 

  33. Reggers G, Ruysen M, Carleer R, Mullens J. TG–GC–MS, TG–MS and TG–FTIR applications on polymers and waste products. Thermochim Acta. 1997;295:107–17.

    Article  CAS  Google Scholar 

  34. Vijayakumar CT, Fink JK. Some aspects of tailoring flame retardancy in HET acid based flame retardants. J Polym Sci Polym Chem Ed. 1983;21:1617–25.

    Article  CAS  Google Scholar 

  35. Grassie N, Melville HW. The thermal degradation of polyvinyl compounds. II. The degradation of benzoyl peroxide catalyzed polymethyl methacrylates. Proc R Soc London. 1949;A199:14–23.

    Google Scholar 

  36. McNeill IC. A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis. Eur Polym J. 1968;4:21–30.

    Article  CAS  Google Scholar 

  37. Gritter RJ, Seeger M, Johnson DE. Hydrocarbon formation in the pyrolytic decomposition of methacrylate copolymers. J Polym Sci Polym Chem Ed. 1978;16:169–77.

    Article  CAS  Google Scholar 

  38. Gao F, Price D, Milnes GJ, Eling B, Lindsay CI, McGrail PT. Laser pyrolysis of polymers and its relation to polymer fire behaviour. J Anal Appl Pyrolysis. 1997;40–41:217–31.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Management and the Principal of Kamaraj College of Engineering and Technology, K. Vellakulam Post and Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi for their encouragement and providing facilities to carry out this work successfully. The authors thank Prof. Dr. J. K. Fink, Institut für Chemie der Kunststoffe, Montanuniversität Leoben, A-8700 Leoben, Austria for his help in pyrolysis studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinnaswamy Thangavel Vijayakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajkumar, T., Vijayakumar, C.T., Sivasamy, P. et al. Thermal degradation studies on PMMA–HET acid based oligoesters blends. J Therm Anal Calorim 100, 651–660 (2010). https://doi.org/10.1007/s10973-009-0266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0266-2

Keywords

Navigation